Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm1 Structured version   Visualization version   GIF version

Theorem oldmm1 38626
Description: De Morgan's law for meet in an ortholattice. (chdmm1 31322 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))

Proof of Theorem oldmm1
StepHypRef Expression
1 oldmm1.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2727 . 2 (le‘𝐾) = (le‘𝐾)
3 ollat 38622 . . 3 (𝐾 ∈ OL → 𝐾 ∈ Lat)
433ad2ant1 1131 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 olop 38623 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
653ad2ant1 1131 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
7 oldmm1.m . . . . 5 = (meet‘𝐾)
81, 7latmcl 18423 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 8syl3an1 1161 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
10 oldmm1.o . . . 4 = (oc‘𝐾)
111, 10opoccl 38603 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
126, 9, 11syl2anc 583 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
131, 10opoccl 38603 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
145, 13sylan 579 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
15143adant3 1130 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
161, 10opoccl 38603 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
175, 16sylan 579 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
18173adant2 1129 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
19 oldmm1.j . . . 4 = (join‘𝐾)
201, 19latjcl 18422 . . 3 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
214, 15, 18, 20syl3anc 1369 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
221, 2, 19latlej1 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
234, 15, 18, 22syl3anc 1369 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
24 simp2 1135 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
251, 2, 10oplecon1b 38610 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
266, 24, 21, 25syl3anc 1369 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
2723, 26mpbid 231 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋)
281, 2, 19latlej2 18432 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
294, 15, 18, 28syl3anc 1369 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
30 simp3 1136 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
311, 2, 10oplecon1b 38610 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
326, 30, 21, 31syl3anc 1369 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
3329, 32mpbid 231 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌)
341, 10opoccl 38603 . . . . . 6 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
356, 21, 34syl2anc 583 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
361, 2, 7latlem12 18449 . . . . 5 ((𝐾 ∈ Lat ∧ (( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵𝑋𝐵𝑌𝐵)) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
374, 35, 24, 30, 36syl13anc 1370 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
3827, 33, 37mpbi2and 711 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌))
391, 2, 10oplecon1b 38610 . . . 4 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
406, 21, 9, 39syl3anc 1369 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
4138, 40mpbid 231 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌)))
421, 2, 7latmle1 18447 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
433, 42syl3an1 1161 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
441, 2, 10oplecon3b 38609 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
456, 9, 24, 44syl3anc 1369 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
4643, 45mpbid 231 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)))
471, 2, 7latmle2 18448 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
483, 47syl3an1 1161 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
491, 2, 10oplecon3b 38609 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
506, 9, 30, 49syl3anc 1369 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
5148, 50mpbid 231 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌)))
521, 2, 19latjle12 18433 . . . 4 ((𝐾 ∈ Lat ∧ (( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵 ∧ ( ‘(𝑋 𝑌)) ∈ 𝐵)) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
534, 15, 18, 12, 52syl13anc 1370 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
5446, 51, 53mpbi2and 711 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌)))
551, 2, 4, 12, 21, 41, 54latasymd 18428 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  Basecbs 17171  lecple 17231  occoc 17232  joincjn 18294  meetcmee 18295  Latclat 18414  OPcops 38581  OLcol 38583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18278  df-poset 18296  df-lub 18329  df-glb 18330  df-join 18331  df-meet 18332  df-lat 18415  df-oposet 38585  df-ol 38587
This theorem is referenced by:  oldmm2  38627  oldmm3N  38628  cmtcomlemN  38657  cmtbr2N  38662  omlfh1N  38667  cvrexch  38830  lhpmod2i2  39448  lhpmod6i1  39449  doca2N  40536  djajN  40547
  Copyright terms: Public domain W3C validator