Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm1 Structured version   Visualization version   GIF version

Theorem oldmm1 39240
Description: De Morgan's law for meet in an ortholattice. (chdmm1 31511 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))

Proof of Theorem oldmm1
StepHypRef Expression
1 oldmm1.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2736 . 2 (le‘𝐾) = (le‘𝐾)
3 ollat 39236 . . 3 (𝐾 ∈ OL → 𝐾 ∈ Lat)
433ad2ant1 1133 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 olop 39237 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
653ad2ant1 1133 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
7 oldmm1.m . . . . 5 = (meet‘𝐾)
81, 7latmcl 18455 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 8syl3an1 1163 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
10 oldmm1.o . . . 4 = (oc‘𝐾)
111, 10opoccl 39217 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
126, 9, 11syl2anc 584 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
131, 10opoccl 39217 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
145, 13sylan 580 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
15143adant3 1132 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
161, 10opoccl 39217 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
175, 16sylan 580 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
18173adant2 1131 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
19 oldmm1.j . . . 4 = (join‘𝐾)
201, 19latjcl 18454 . . 3 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
214, 15, 18, 20syl3anc 1373 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
221, 2, 19latlej1 18463 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
234, 15, 18, 22syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
24 simp2 1137 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
251, 2, 10oplecon1b 39224 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
266, 24, 21, 25syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
2723, 26mpbid 232 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋)
281, 2, 19latlej2 18464 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
294, 15, 18, 28syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
30 simp3 1138 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
311, 2, 10oplecon1b 39224 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
326, 30, 21, 31syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
3329, 32mpbid 232 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌)
341, 10opoccl 39217 . . . . . 6 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
356, 21, 34syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
361, 2, 7latlem12 18481 . . . . 5 ((𝐾 ∈ Lat ∧ (( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵𝑋𝐵𝑌𝐵)) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
374, 35, 24, 30, 36syl13anc 1374 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
3827, 33, 37mpbi2and 712 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌))
391, 2, 10oplecon1b 39224 . . . 4 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
406, 21, 9, 39syl3anc 1373 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
4138, 40mpbid 232 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌)))
421, 2, 7latmle1 18479 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
433, 42syl3an1 1163 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
441, 2, 10oplecon3b 39223 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
456, 9, 24, 44syl3anc 1373 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
4643, 45mpbid 232 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)))
471, 2, 7latmle2 18480 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
483, 47syl3an1 1163 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
491, 2, 10oplecon3b 39223 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
506, 9, 30, 49syl3anc 1373 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
5148, 50mpbid 232 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌)))
521, 2, 19latjle12 18465 . . . 4 ((𝐾 ∈ Lat ∧ (( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵 ∧ ( ‘(𝑋 𝑌)) ∈ 𝐵)) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
534, 15, 18, 12, 52syl13anc 1374 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
5446, 51, 53mpbi2and 712 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌)))
551, 2, 4, 12, 21, 41, 54latasymd 18460 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  occoc 17284  joincjn 18328  meetcmee 18329  Latclat 18446  OPcops 39195  OLcol 39197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-lat 18447  df-oposet 39199  df-ol 39201
This theorem is referenced by:  oldmm2  39241  oldmm3N  39242  cmtcomlemN  39271  cmtbr2N  39276  omlfh1N  39281  cvrexch  39444  lhpmod2i2  40062  lhpmod6i1  40063  doca2N  41150  djajN  41161
  Copyright terms: Public domain W3C validator