Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm1 Structured version   Visualization version   GIF version

Theorem oldmm1 39210
Description: De Morgan's law for meet in an ortholattice. (chdmm1 31454 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmm1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))

Proof of Theorem oldmm1
StepHypRef Expression
1 oldmm1.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2729 . 2 (le‘𝐾) = (le‘𝐾)
3 ollat 39206 . . 3 (𝐾 ∈ OL → 𝐾 ∈ Lat)
433ad2ant1 1133 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 olop 39207 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
653ad2ant1 1133 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
7 oldmm1.m . . . . 5 = (meet‘𝐾)
81, 7latmcl 18399 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 8syl3an1 1163 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
10 oldmm1.o . . . 4 = (oc‘𝐾)
111, 10opoccl 39187 . . 3 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
126, 9, 11syl2anc 584 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) ∈ 𝐵)
131, 10opoccl 39187 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
145, 13sylan 580 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
15143adant3 1132 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
161, 10opoccl 39187 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
175, 16sylan 580 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
18173adant2 1131 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
19 oldmm1.j . . . 4 = (join‘𝐾)
201, 19latjcl 18398 . . 3 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
214, 15, 18, 20syl3anc 1373 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
221, 2, 19latlej1 18407 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
234, 15, 18, 22syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)))
24 simp2 1137 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
251, 2, 10oplecon1b 39194 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
266, 24, 21, 25syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋))
2723, 26mpbid 232 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋)
281, 2, 19latlej2 18408 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
294, 15, 18, 28syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)))
30 simp3 1138 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
311, 2, 10oplecon1b 39194 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵 ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
326, 30, 21, 31syl3anc 1373 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)(le‘𝐾)(( 𝑋) ( 𝑌)) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌))
3329, 32mpbid 232 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌)
341, 10opoccl 39187 . . . . . 6 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
356, 21, 34syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵)
361, 2, 7latlem12 18425 . . . . 5 ((𝐾 ∈ Lat ∧ (( ‘(( 𝑋) ( 𝑌))) ∈ 𝐵𝑋𝐵𝑌𝐵)) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
374, 35, 24, 30, 36syl13anc 1374 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑋 ∧ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)𝑌) ↔ ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌)))
3827, 33, 37mpbi2and 712 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌))
391, 2, 10oplecon1b 39194 . . . 4 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
406, 21, 9, 39syl3anc 1373 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( ‘(( 𝑋) ( 𝑌)))(le‘𝐾)(𝑋 𝑌) ↔ ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌))))
4138, 40mpbid 232 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌))(le‘𝐾)(( 𝑋) ( 𝑌)))
421, 2, 7latmle1 18423 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
433, 42syl3an1 1163 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑋)
441, 2, 10oplecon3b 39193 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
456, 9, 24, 44syl3anc 1373 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌))))
4643, 45mpbid 232 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)))
471, 2, 7latmle2 18424 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
483, 47syl3an1 1163 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌)(le‘𝐾)𝑌)
491, 2, 10oplecon3b 39193 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
506, 9, 30, 49syl3anc 1373 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))))
5148, 50mpbid 232 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌)))
521, 2, 19latjle12 18409 . . . 4 ((𝐾 ∈ Lat ∧ (( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵 ∧ ( ‘(𝑋 𝑌)) ∈ 𝐵)) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
534, 15, 18, 12, 52syl13anc 1374 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋)(le‘𝐾)( ‘(𝑋 𝑌)) ∧ ( 𝑌)(le‘𝐾)( ‘(𝑋 𝑌))) ↔ (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌))))
5446, 51, 53mpbi2and 712 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌))(le‘𝐾)( ‘(𝑋 𝑌)))
551, 2, 4, 12, 21, 41, 54latasymd 18404 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  occoc 17228  joincjn 18272  meetcmee 18273  Latclat 18390  OPcops 39165  OLcol 39167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-lat 18391  df-oposet 39169  df-ol 39171
This theorem is referenced by:  oldmm2  39211  oldmm3N  39212  cmtcomlemN  39241  cmtbr2N  39246  omlfh1N  39251  cvrexch  39414  lhpmod2i2  40032  lhpmod6i1  40033  doca2N  41120  djajN  41131
  Copyright terms: Public domain W3C validator