Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olposN Structured version   Visualization version   GIF version

Theorem olposN 39208
Description: An ortholattice is a poset. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
Assertion
Ref Expression
olposN (𝐾 ∈ OL → 𝐾 ∈ Poset)

Proof of Theorem olposN
StepHypRef Expression
1 olop 39207 . 2 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 opposet 39174 . 2 (𝐾 ∈ OP → 𝐾 ∈ Poset)
31, 2syl 17 1 (𝐾 ∈ OL → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Posetcpo 18268  OPcops 39165  OLcol 39167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390  df-oposet 39169  df-ol 39171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator