Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olposN Structured version   Visualization version   GIF version

Theorem olposN 39216
Description: An ortholattice is a poset. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
Assertion
Ref Expression
olposN (𝐾 ∈ OL → 𝐾 ∈ Poset)

Proof of Theorem olposN
StepHypRef Expression
1 olop 39215 . 2 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 opposet 39182 . 2 (𝐾 ∈ OP → 𝐾 ∈ Poset)
31, 2syl 17 1 (𝐾 ∈ OL → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Posetcpo 18353  OPcops 39173  OLcol 39175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-dm 5695  df-iota 6514  df-fv 6569  df-ov 7434  df-oposet 39177  df-ol 39179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator