| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issoi | Structured version Visualization version GIF version | ||
| Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| issoi.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) |
| issoi.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| issoi.3 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| Ref | Expression |
|---|---|
| issoi | ⊢ 𝑅 Or 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issoi.1 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑥𝑅𝑥) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
| 3 | issoi.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 5 | 2, 4 | ispod 5601 | . . 3 ⊢ (⊤ → 𝑅 Po 𝐴) |
| 6 | issoi.3 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 8 | 5, 7 | issod 5627 | . 2 ⊢ (⊤ → 𝑅 Or 𝐴) |
| 9 | 8 | mptru 1547 | 1 ⊢ 𝑅 Or 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ w3o 1086 ∧ w3a 1087 ⊤wtru 1541 ∈ wcel 2108 class class class wbr 5143 Or wor 5591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ral 3062 df-po 5592 df-so 5593 |
| This theorem is referenced by: isso2i 5629 ltsopr 11072 sltsolem1 27720 |
| Copyright terms: Public domain | W3C validator |