Home | Metamath
Proof Explorer Theorem List (p. 57 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | xpeq2 5601 | Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | ||
Theorem | elxpi 5602* | Membership in a Cartesian product. Uses fewer axioms than elxp 5603. (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | ||
Theorem | elxp 5603* | Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | ||
Theorem | elxp2 5604* | Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) | ||
Theorem | xpeq12 5605 | Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | ||
Theorem | xpeq1i 5606 | Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) | ||
Theorem | xpeq2i 5607 | Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) | ||
Theorem | xpeq12i 5608 | Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) | ||
Theorem | xpeq1d 5609 | Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | ||
Theorem | xpeq2d 5610 | Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | ||
Theorem | xpeq12d 5611 | Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | ||
Theorem | sqxpeqd 5612 | Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) | ||
Theorem | nfxp 5613 | Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 × 𝐵) | ||
Theorem | 0nelxp 5614 | The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by JJ, 13-Aug-2021.) |
⊢ ¬ ∅ ∈ (𝐴 × 𝐵) | ||
Theorem | 0nelelxp 5615 | A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.) |
⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) | ||
Theorem | opelxp 5616 | Ordered pair membership in a Cartesian product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | ||
Theorem | opelxpi 5617 | Ordered pair membership in a Cartesian product (implication). (Contributed by NM, 28-May-1995.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | ||
Theorem | opelxpd 5618 | Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | ||
Theorem | opelvv 5619 | Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) | ||
Theorem | opelvvg 5620 | Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | ||
Theorem | opelxp1 5621 | The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐴 ∈ 𝐶) | ||
Theorem | opelxp2 5622 | The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) | ||
Theorem | otelxp1 5623 | The first member of an ordered triple of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) |
⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) | ||
Theorem | otel3xp 5624 | An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.) |
⊢ ((𝑇 = 〈𝐴, 𝐵, 𝐶〉 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)) | ||
Theorem | opabssxpd 5625* | An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 7870. (Contributed by AV, 26-Nov-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) | ||
Theorem | rabxp 5626* | Class abstraction restricted to a Cartesian product as an ordered-pair class abstraction. (Contributed by NM, 20-Feb-2014.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓)} | ||
Theorem | brxp 5627 | Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | ||
Theorem | pwvrel 5628 | A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) | ||
Theorem | pwvabrel 5629 | The powerclass of the cartesian square of the universal class is the class of all sets which are binary relations. (Contributed by BJ, 21-Dec-2023.) |
⊢ 𝒫 (V × V) = {𝑥 ∣ Rel 𝑥} | ||
Theorem | brrelex12 5630 | Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | brrelex1 5631 | If two classes are related by a binary relation, then the first class is a set. (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | ||
Theorem | brrelex2 5632 | If two classes are related by a binary relation, then the second class is a set. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | ||
Theorem | brrelex12i 5633 | Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | brrelex1i 5634 | The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) | ||
Theorem | brrelex2i 5635 | The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) | ||
Theorem | nprrel12 5636 | Proper classes are not related via any relation. (Contributed by AV, 29-Oct-2021.) |
⊢ Rel 𝑅 ⇒ ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 𝐴𝑅𝐵) | ||
Theorem | nprrel 5637 | No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.) |
⊢ Rel 𝑅 & ⊢ ¬ 𝐴 ∈ V ⇒ ⊢ ¬ 𝐴𝑅𝐵 | ||
Theorem | 0nelrel0 5638 | A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) (Revised by BJ, 14-Jul-2023.) |
⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | ||
Theorem | 0nelrel 5639 | A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
⊢ (Rel 𝑅 → ∅ ∉ 𝑅) | ||
Theorem | fconstmpt 5640* | Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.) |
⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | vtoclr 5641* | Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ Rel 𝑅 & ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ⇒ ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
Theorem | opthprc 5642 | Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.) |
⊢ (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | brel 5643 | Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝑅 ⊆ (𝐶 × 𝐷) ⇒ ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | ||
Theorem | elxp3 5644* | Membership in a Cartesian product. (Contributed by NM, 5-Mar-1995.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶))) | ||
Theorem | opeliunxp 5645 | Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
⊢ (〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) | ||
Theorem | xpundi 5646 | Distributive law for Cartesian product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.) |
⊢ (𝐴 × (𝐵 ∪ 𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) | ||
Theorem | xpundir 5647 | Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.) |
⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) | ||
Theorem | xpiundi 5648* | Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.) |
⊢ (𝐶 × ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 × 𝐵) | ||
Theorem | xpiundir 5649* | Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) | ||
Theorem | iunxpconst 5650* | Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | ||
Theorem | xpun 5651 | The Cartesian product of two unions. (Contributed by NM, 12-Aug-2004.) |
⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) | ||
Theorem | elvv 5652* | Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | ||
Theorem | elvvv 5653* | Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.) |
⊢ (𝐴 ∈ ((V × V) × V) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | ||
Theorem | elvvuni 5654 | An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.) |
⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) | ||
Theorem | brinxp2 5655 | Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1087. (Revised by Peter Mazsa, 18-Sep-2022.) |
⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) | ||
Theorem | brinxp 5656 | Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵)) | ||
Theorem | opelinxp 5657 | Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019.) |
⊢ (〈𝐶, 𝐷〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ 𝑅)) | ||
Theorem | poinxp 5658 | Intersection of partial order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
⊢ (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴) | ||
Theorem | soinxp 5659 | Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
⊢ (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴) | ||
Theorem | frinxp 5660 | Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
⊢ (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴) | ||
Theorem | seinxp 5661 | Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.) |
⊢ (𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴) | ||
Theorem | weinxp 5662 | Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997.) (Revised by Mario Carneiro, 10-Jul-2014.) |
⊢ (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) | ||
Theorem | posn 5663 | Partial ordering of a singleton. (Contributed by NM, 27-Apr-2009.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | ||
Theorem | sosn 5664 | Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | ||
Theorem | frsn 5665 | Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | ||
Theorem | wesn 5666 | Well-ordering of a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (Rel 𝑅 → (𝑅 We {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | ||
Theorem | elopaelxp 5667* | Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.) |
⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) | ||
Theorem | bropaex12 5668* | Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜓} ⇒ ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | opabssxp 5669* | An abstraction relation is a subset of a related Cartesian product. (Contributed by NM, 16-Jul-1995.) |
⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) | ||
Theorem | brab2a 5670* | The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} ⇒ ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝜓)) | ||
Theorem | optocl 5671* | Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) |
⊢ 𝐷 = (𝐵 × 𝐶) & ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐷 → 𝜓) | ||
Theorem | 2optocl 5672* | Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
⊢ 𝑅 = (𝐶 × 𝐷) & ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) | ||
Theorem | 3optocl 5673* | Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
⊢ 𝑅 = (𝐷 × 𝐹) & ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (〈𝑣, 𝑢〉 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅) → 𝜃) | ||
Theorem | opbrop 5674* | Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.) |
⊢ (((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ (𝑣 = 𝐶 ∧ 𝑢 = 𝐷)) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ 𝜑))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉𝑅〈𝐶, 𝐷〉 ↔ 𝜓)) | ||
Theorem | 0xp 5675 | The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
⊢ (∅ × 𝐴) = ∅ | ||
Theorem | csbxp 5676 | Distribute proper substitution through the Cartesian product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | releq 5677 | Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | ||
Theorem | releqi 5678 | Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (Rel 𝐴 ↔ Rel 𝐵) | ||
Theorem | releqd 5679 | Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) | ||
Theorem | nfrel 5680 | Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥Rel 𝐴 | ||
Theorem | sbcrel 5681 | Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) | ||
Theorem | relss 5682 | Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | ||
Theorem | ssrel 5683* | A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Remove dependency on ax-sep 5218, ax-nul 5225, ax-pr 5347. (Revised by KP, 25-Oct-2021.) |
⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | ||
Theorem | eqrel 5684* | Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) |
⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) | ||
Theorem | ssrel2 5685* | A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 5683 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅 ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ 𝑆))) | ||
Theorem | relssi 5686* | Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.) |
⊢ Rel 𝐴 & ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | relssdv 5687* | Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.) |
⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | eqrelriv 5688* | Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.) |
⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) ⇒ ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵) | ||
Theorem | eqrelriiv 5689* | Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
⊢ Rel 𝐴 & ⊢ Rel 𝐵 & ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | eqbrriv 5690* | Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.) |
⊢ Rel 𝐴 & ⊢ Rel 𝐵 & ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | eqrelrdv 5691* | Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
⊢ Rel 𝐴 & ⊢ Rel 𝐵 & ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | eqbrrdv 5692* | Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → Rel 𝐵) & ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | eqbrrdiv 5693* | Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
⊢ Rel 𝐴 & ⊢ Rel 𝐵 & ⊢ (𝜑 → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | eqrelrdv2 5694* | A version of eqrelrdv 5691. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) ⇒ ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) | ||
Theorem | ssrelrel 5695* | A subclass relationship determined by ordered triples. Use relrelss 6165 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ ((V × V) × V) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦∀𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐴 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐵))) | ||
Theorem | eqrelrel 5696* | Extensionality principle for ordered triples (used by 2-place operations df-oprab 7259), analogous to eqrel 5684. Use relrelss 6165 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) |
⊢ ((𝐴 ∪ 𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦∀𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐴 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐵))) | ||
Theorem | elrel 5697* | A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.) |
⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | ||
Theorem | rel0 5698 | The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
⊢ Rel ∅ | ||
Theorem | nrelv 5699 | The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.) |
⊢ ¬ Rel V | ||
Theorem | relsng 5700 | A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.) |
⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |