|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > issod | Structured version Visualization version GIF version | ||
| Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| issod.1 | ⊢ (𝜑 → 𝑅 Po 𝐴) | 
| issod.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | 
| Ref | Expression | 
|---|---|
| issod | ⊢ (𝜑 → 𝑅 Or 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issod.1 | . 2 ⊢ (𝜑 → 𝑅 Po 𝐴) | |
| 2 | issod.2 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
| 3 | 2 | ralrimivva 3202 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | 
| 4 | df-so 5593 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑅 Or 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 Po wpo 5590 Or wor 5591 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3062 df-so 5593 | 
| This theorem is referenced by: issoi 5628 swoso 8779 wemapsolem 9590 legso 28607 chnso 33004 weiunso 36467 fin2so 37614 | 
| Copyright terms: Public domain | W3C validator |