Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issod | Structured version Visualization version GIF version |
Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
issod.1 | ⊢ (𝜑 → 𝑅 Po 𝐴) |
issod.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
Ref | Expression |
---|---|
issod | ⊢ (𝜑 → 𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issod.1 | . 2 ⊢ (𝜑 → 𝑅 Po 𝐴) | |
2 | issod.2 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
3 | 2 | ralrimivva 3114 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
4 | df-so 5495 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
5 | 1, 3, 4 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1084 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 Po wpo 5492 Or wor 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 df-so 5495 |
This theorem is referenced by: issoi 5528 swoso 8489 wemapsolem 9239 legso 26864 fin2so 35691 |
Copyright terms: Public domain | W3C validator |