MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isso2i Structured version   Visualization version   GIF version

Theorem isso2i 5633
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
isso2i.1 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 = 𝑦𝑦𝑅𝑥)))
isso2i.2 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Assertion
Ref Expression
isso2i 𝑅 Or 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Proof of Theorem isso2i
StepHypRef Expression
1 equid 2009 . . . . 5 𝑥 = 𝑥
21orci 865 . . . 4 (𝑥 = 𝑥𝑥𝑅𝑥)
3 nfv 1912 . . . . 5 𝑦((𝑥𝐴𝑥𝐴) → ((𝑥 = 𝑥𝑥𝑅𝑥) ↔ ¬ 𝑥𝑅𝑥))
4 eleq1w 2822 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
54anbi2d 630 . . . . . 6 (𝑦 = 𝑥 → ((𝑥𝐴𝑦𝐴) ↔ (𝑥𝐴𝑥𝐴)))
6 equequ2 2023 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥 = 𝑦𝑥 = 𝑥))
7 breq1 5151 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝑅𝑥𝑥𝑅𝑥))
86, 7orbi12d 918 . . . . . . 7 (𝑦 = 𝑥 → ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥 = 𝑥𝑥𝑅𝑥)))
9 breq2 5152 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
109notbid 318 . . . . . . 7 (𝑦 = 𝑥 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑥))
118, 10bibi12d 345 . . . . . 6 (𝑦 = 𝑥 → (((𝑥 = 𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦) ↔ ((𝑥 = 𝑥𝑥𝑅𝑥) ↔ ¬ 𝑥𝑅𝑥)))
125, 11imbi12d 344 . . . . 5 (𝑦 = 𝑥 → (((𝑥𝐴𝑦𝐴) → ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦)) ↔ ((𝑥𝐴𝑥𝐴) → ((𝑥 = 𝑥𝑥𝑅𝑥) ↔ ¬ 𝑥𝑅𝑥))))
13 isso2i.1 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 = 𝑦𝑦𝑅𝑥)))
1413con2bid 354 . . . . 5 ((𝑥𝐴𝑦𝐴) → ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦))
153, 12, 14chvarfv 2238 . . . 4 ((𝑥𝐴𝑥𝐴) → ((𝑥 = 𝑥𝑥𝑅𝑥) ↔ ¬ 𝑥𝑅𝑥))
162, 15mpbii 233 . . 3 ((𝑥𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
1716anidms 566 . 2 (𝑥𝐴 → ¬ 𝑥𝑅𝑥)
18 isso2i.2 . 2 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1914biimprd 248 . . . 4 ((𝑥𝐴𝑦𝐴) → (¬ 𝑥𝑅𝑦 → (𝑥 = 𝑦𝑦𝑅𝑥)))
2019orrd 863 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)))
21 3orass 1089 . . 3 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)))
2220, 21sylibr 234 . 2 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2317, 18, 22issoi 5632 1 𝑅 Or 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086  wcel 2106   class class class wbr 5148   Or wor 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-po 5597  df-so 5598
This theorem is referenced by:  ltsonq  11007  ltsosr  11132  ltso  11339  xrltso  13180
  Copyright terms: Public domain W3C validator