Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ispod | Structured version Visualization version GIF version |
Description: Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.) |
Ref | Expression |
---|---|
ispod.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
ispod.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Ref | Expression |
---|---|
ispod | ⊢ (𝜑 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispod.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
2 | 1 | 3ad2antr1 1185 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ 𝑥𝑅𝑥) |
3 | ispod.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
4 | 2, 3 | jca 515 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
5 | 4 | ralrimivvva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
6 | df-po 5447 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
7 | 5, 6 | sylibr 237 | 1 ⊢ (𝜑 → 𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 ∀wral 3070 class class class wbr 5036 Po wpo 5445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 df-ral 3075 df-po 5447 |
This theorem is referenced by: swopo 5457 pofun 5464 issoi 5480 wemappo 9059 pospo 17663 legso 26506 pocnv 33259 poxp2 33358 poxp3 33364 lrrecpo 33681 |
Copyright terms: Public domain | W3C validator |