MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopr Structured version   Visualization version   GIF version

Theorem ltsopr 10442
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 4074 . . . 4 ¬ 𝑥𝑥
2 ltprord 10440 . . . 4 ((𝑥P𝑥P) → (𝑥<P 𝑥𝑥𝑥))
31, 2mtbiri 328 . . 3 ((𝑥P𝑥P) → ¬ 𝑥<P 𝑥)
43anidms 567 . 2 (𝑥P → ¬ 𝑥<P 𝑥)
5 psstr 4078 . . 3 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
6 ltprord 10440 . . . . . 6 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥𝑦))
763adant3 1124 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦𝑥𝑦))
8 ltprord 10440 . . . . . 6 ((𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
983adant1 1122 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
107, 9anbi12d 630 . . . 4 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
11 ltprord 10440 . . . . 5 ((𝑥P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
12113adant2 1123 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
1310, 12imbi12d 346 . . 3 ((𝑥P𝑦P𝑧P) → (((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
145, 13mpbiri 259 . 2 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧))
15 psslinpr 10441 . . 3 ((𝑥P𝑦P) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
16 biidd 263 . . . 4 ((𝑥P𝑦P) → (𝑥 = 𝑦𝑥 = 𝑦))
17 ltprord 10440 . . . . 5 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
1817ancoms 459 . . . 4 ((𝑥P𝑦P) → (𝑦<P 𝑥𝑦𝑥))
196, 16, 183orbi123d 1426 . . 3 ((𝑥P𝑦P) → ((𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2015, 19mpbird 258 . 2 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥))
214, 14, 20issoi 5500 1 <P Or P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3o 1078  w3a 1079  wcel 2105  wpss 3934   class class class wbr 5057   Or wor 5466  Pcnp 10269  <P cltp 10273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-oadd 8095  df-omul 8096  df-er 8278  df-ni 10282  df-mi 10284  df-lti 10285  df-ltpq 10320  df-enq 10321  df-nq 10322  df-ltnq 10328  df-np 10391  df-ltp 10395
This theorem is referenced by:  ltapr  10455  addcanpr  10456  suplem2pr  10463  ltsosr  10504
  Copyright terms: Public domain W3C validator