| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsopr | Structured version Visualization version GIF version | ||
| Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsopr | ⊢ <P Or P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr 4051 | . . . 4 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
| 2 | ltprord 10913 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → (𝑥<P 𝑥 ↔ 𝑥 ⊊ 𝑥)) | |
| 3 | 1, 2 | mtbiri 327 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → ¬ 𝑥<P 𝑥) |
| 4 | 3 | anidms 566 | . 2 ⊢ (𝑥 ∈ P → ¬ 𝑥<P 𝑥) |
| 5 | psstr 4055 | . . 3 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
| 6 | ltprord 10913 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) | |
| 7 | 6 | 3adant3 1132 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) |
| 8 | ltprord 10913 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) | |
| 9 | 8 | 3adant1 1130 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) |
| 10 | 7, 9 | anbi12d 632 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧))) |
| 11 | ltprord 10913 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) | |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) |
| 13 | 10, 12 | imbi12d 344 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
| 14 | 5, 13 | mpbiri 258 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧)) |
| 15 | psslinpr 10914 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
| 16 | biidd 262 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 17 | ltprord 10913 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑥 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) | |
| 18 | 17 | ancoms 458 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
| 19 | 6, 16, 18 | 3orbi123d 1437 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥))) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥)) |
| 21 | 4, 14, 20 | issoi 5558 | 1 ⊢ <P Or P |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 ∈ wcel 2110 ⊊ wpss 3901 class class class wbr 5089 Or wor 5521 Pcnp 10742 <P cltp 10746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-oadd 8384 df-omul 8385 df-er 8617 df-ni 10755 df-mi 10757 df-lti 10758 df-ltpq 10793 df-enq 10794 df-nq 10795 df-ltnq 10801 df-np 10864 df-ltp 10868 |
| This theorem is referenced by: ltapr 10928 addcanpr 10929 suplem2pr 10936 ltsosr 10977 |
| Copyright terms: Public domain | W3C validator |