![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopr | Structured version Visualization version GIF version |
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopr | ⊢ <P Or P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssirr 4100 | . . . 4 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
2 | ltprord 11024 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → (𝑥<P 𝑥 ↔ 𝑥 ⊊ 𝑥)) | |
3 | 1, 2 | mtbiri 326 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → ¬ 𝑥<P 𝑥) |
4 | 3 | anidms 567 | . 2 ⊢ (𝑥 ∈ P → ¬ 𝑥<P 𝑥) |
5 | psstr 4104 | . . 3 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
6 | ltprord 11024 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) | |
7 | 6 | 3adant3 1132 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) |
8 | ltprord 11024 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) | |
9 | 8 | 3adant1 1130 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) |
10 | 7, 9 | anbi12d 631 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧))) |
11 | ltprord 11024 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) | |
12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) |
13 | 10, 12 | imbi12d 344 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
14 | 5, 13 | mpbiri 257 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧)) |
15 | psslinpr 11025 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
16 | biidd 261 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
17 | ltprord 11024 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑥 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) | |
18 | 17 | ancoms 459 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
19 | 6, 16, 18 | 3orbi123d 1435 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥))) |
20 | 15, 19 | mpbird 256 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥)) |
21 | 4, 14, 20 | issoi 5622 | 1 ⊢ <P Or P |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ w3o 1086 ∧ w3a 1087 ∈ wcel 2106 ⊊ wpss 3949 class class class wbr 5148 Or wor 5587 Pcnp 10853 <P cltp 10857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-oadd 8469 df-omul 8470 df-er 8702 df-ni 10866 df-mi 10868 df-lti 10869 df-ltpq 10904 df-enq 10905 df-nq 10906 df-ltnq 10912 df-np 10975 df-ltp 10979 |
This theorem is referenced by: ltapr 11039 addcanpr 11040 suplem2pr 11047 ltsosr 11088 |
Copyright terms: Public domain | W3C validator |