MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopr Structured version   Visualization version   GIF version

Theorem ltsopr 11069
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 4112 . . . 4 ¬ 𝑥𝑥
2 ltprord 11067 . . . 4 ((𝑥P𝑥P) → (𝑥<P 𝑥𝑥𝑥))
31, 2mtbiri 327 . . 3 ((𝑥P𝑥P) → ¬ 𝑥<P 𝑥)
43anidms 566 . 2 (𝑥P → ¬ 𝑥<P 𝑥)
5 psstr 4116 . . 3 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
6 ltprord 11067 . . . . . 6 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥𝑦))
763adant3 1131 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦𝑥𝑦))
8 ltprord 11067 . . . . . 6 ((𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
983adant1 1129 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
107, 9anbi12d 632 . . . 4 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
11 ltprord 11067 . . . . 5 ((𝑥P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
12113adant2 1130 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
1310, 12imbi12d 344 . . 3 ((𝑥P𝑦P𝑧P) → (((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
145, 13mpbiri 258 . 2 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧))
15 psslinpr 11068 . . 3 ((𝑥P𝑦P) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
16 biidd 262 . . . 4 ((𝑥P𝑦P) → (𝑥 = 𝑦𝑥 = 𝑦))
17 ltprord 11067 . . . . 5 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
1817ancoms 458 . . . 4 ((𝑥P𝑦P) → (𝑦<P 𝑥𝑦𝑥))
196, 16, 183orbi123d 1434 . . 3 ((𝑥P𝑦P) → ((𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2015, 19mpbird 257 . 2 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥))
214, 14, 20issoi 5631 1 <P Or P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086  wcel 2105  wpss 3963   class class class wbr 5147   Or wor 5595  Pcnp 10896  <P cltp 10900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-oadd 8508  df-omul 8509  df-er 8743  df-ni 10909  df-mi 10911  df-lti 10912  df-ltpq 10947  df-enq 10948  df-nq 10949  df-ltnq 10955  df-np 11018  df-ltp 11022
This theorem is referenced by:  ltapr  11082  addcanpr  11083  suplem2pr  11090  ltsosr  11131
  Copyright terms: Public domain W3C validator