![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopr | Structured version Visualization version GIF version |
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopr | ⊢ <P Or P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssirr 4112 | . . . 4 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
2 | ltprord 11067 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → (𝑥<P 𝑥 ↔ 𝑥 ⊊ 𝑥)) | |
3 | 1, 2 | mtbiri 327 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → ¬ 𝑥<P 𝑥) |
4 | 3 | anidms 566 | . 2 ⊢ (𝑥 ∈ P → ¬ 𝑥<P 𝑥) |
5 | psstr 4116 | . . 3 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
6 | ltprord 11067 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) | |
7 | 6 | 3adant3 1131 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) |
8 | ltprord 11067 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) | |
9 | 8 | 3adant1 1129 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) |
10 | 7, 9 | anbi12d 632 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧))) |
11 | ltprord 11067 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) | |
12 | 11 | 3adant2 1130 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) |
13 | 10, 12 | imbi12d 344 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
14 | 5, 13 | mpbiri 258 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧)) |
15 | psslinpr 11068 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
16 | biidd 262 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
17 | ltprord 11067 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑥 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) | |
18 | 17 | ancoms 458 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
19 | 6, 16, 18 | 3orbi123d 1434 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥))) |
20 | 15, 19 | mpbird 257 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥)) |
21 | 4, 14, 20 | issoi 5631 | 1 ⊢ <P Or P |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 ∈ wcel 2105 ⊊ wpss 3963 class class class wbr 5147 Or wor 5595 Pcnp 10896 <P cltp 10900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-oadd 8508 df-omul 8509 df-er 8743 df-ni 10909 df-mi 10911 df-lti 10912 df-ltpq 10947 df-enq 10948 df-nq 10949 df-ltnq 10955 df-np 11018 df-ltp 11022 |
This theorem is referenced by: ltapr 11082 addcanpr 11083 suplem2pr 11090 ltsosr 11131 |
Copyright terms: Public domain | W3C validator |