MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopr Structured version   Visualization version   GIF version

Theorem ltsopr 10788
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 4035 . . . 4 ¬ 𝑥𝑥
2 ltprord 10786 . . . 4 ((𝑥P𝑥P) → (𝑥<P 𝑥𝑥𝑥))
31, 2mtbiri 327 . . 3 ((𝑥P𝑥P) → ¬ 𝑥<P 𝑥)
43anidms 567 . 2 (𝑥P → ¬ 𝑥<P 𝑥)
5 psstr 4039 . . 3 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
6 ltprord 10786 . . . . . 6 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥𝑦))
763adant3 1131 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦𝑥𝑦))
8 ltprord 10786 . . . . . 6 ((𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
983adant1 1129 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
107, 9anbi12d 631 . . . 4 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
11 ltprord 10786 . . . . 5 ((𝑥P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
12113adant2 1130 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
1310, 12imbi12d 345 . . 3 ((𝑥P𝑦P𝑧P) → (((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
145, 13mpbiri 257 . 2 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧))
15 psslinpr 10787 . . 3 ((𝑥P𝑦P) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
16 biidd 261 . . . 4 ((𝑥P𝑦P) → (𝑥 = 𝑦𝑥 = 𝑦))
17 ltprord 10786 . . . . 5 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
1817ancoms 459 . . . 4 ((𝑥P𝑦P) → (𝑦<P 𝑥𝑦𝑥))
196, 16, 183orbi123d 1434 . . 3 ((𝑥P𝑦P) → ((𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2015, 19mpbird 256 . 2 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥))
214, 14, 20issoi 5537 1 <P Or P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086  wcel 2106  wpss 3888   class class class wbr 5074   Or wor 5502  Pcnp 10615  <P cltp 10619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-mi 10630  df-lti 10631  df-ltpq 10666  df-enq 10667  df-nq 10668  df-ltnq 10674  df-np 10737  df-ltp 10741
This theorem is referenced by:  ltapr  10801  addcanpr  10802  suplem2pr  10809  ltsosr  10850
  Copyright terms: Public domain W3C validator