![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopr | Structured version Visualization version GIF version |
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopr | ⊢ <P Or P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssirr 3904 | . . . 4 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
2 | ltprord 10140 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → (𝑥<P 𝑥 ↔ 𝑥 ⊊ 𝑥)) | |
3 | 1, 2 | mtbiri 319 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → ¬ 𝑥<P 𝑥) |
4 | 3 | anidms 563 | . 2 ⊢ (𝑥 ∈ P → ¬ 𝑥<P 𝑥) |
5 | psstr 3908 | . . 3 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
6 | ltprord 10140 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) | |
7 | 6 | 3adant3 1163 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) |
8 | ltprord 10140 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) | |
9 | 8 | 3adant1 1161 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) |
10 | 7, 9 | anbi12d 625 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧))) |
11 | ltprord 10140 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) | |
12 | 11 | 3adant2 1162 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) |
13 | 10, 12 | imbi12d 336 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
14 | 5, 13 | mpbiri 250 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧)) |
15 | psslinpr 10141 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
16 | biidd 254 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
17 | ltprord 10140 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑥 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) | |
18 | 17 | ancoms 451 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
19 | 6, 16, 18 | 3orbi123d 1560 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥))) |
20 | 15, 19 | mpbird 249 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥)) |
21 | 4, 14, 20 | issoi 5264 | 1 ⊢ <P Or P |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ w3o 1107 ∧ w3a 1108 ∈ wcel 2157 ⊊ wpss 3770 class class class wbr 4843 Or wor 5232 Pcnp 9969 <P cltp 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-oadd 7803 df-omul 7804 df-er 7982 df-ni 9982 df-mi 9984 df-lti 9985 df-ltpq 10020 df-enq 10021 df-nq 10022 df-ltnq 10028 df-np 10091 df-ltp 10095 |
This theorem is referenced by: ltapr 10155 addcanpr 10156 suplem2pr 10163 ltsosr 10203 |
Copyright terms: Public domain | W3C validator |