MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopr Structured version   Visualization version   GIF version

Theorem ltsopr 10719
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 4031 . . . 4 ¬ 𝑥𝑥
2 ltprord 10717 . . . 4 ((𝑥P𝑥P) → (𝑥<P 𝑥𝑥𝑥))
31, 2mtbiri 326 . . 3 ((𝑥P𝑥P) → ¬ 𝑥<P 𝑥)
43anidms 566 . 2 (𝑥P → ¬ 𝑥<P 𝑥)
5 psstr 4035 . . 3 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
6 ltprord 10717 . . . . . 6 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥𝑦))
763adant3 1130 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦𝑥𝑦))
8 ltprord 10717 . . . . . 6 ((𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
983adant1 1128 . . . . 5 ((𝑥P𝑦P𝑧P) → (𝑦<P 𝑧𝑦𝑧))
107, 9anbi12d 630 . . . 4 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
11 ltprord 10717 . . . . 5 ((𝑥P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
12113adant2 1129 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑧𝑥𝑧))
1310, 12imbi12d 344 . . 3 ((𝑥P𝑦P𝑧P) → (((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
145, 13mpbiri 257 . 2 ((𝑥P𝑦P𝑧P) → ((𝑥<P 𝑦𝑦<P 𝑧) → 𝑥<P 𝑧))
15 psslinpr 10718 . . 3 ((𝑥P𝑦P) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
16 biidd 261 . . . 4 ((𝑥P𝑦P) → (𝑥 = 𝑦𝑥 = 𝑦))
17 ltprord 10717 . . . . 5 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
1817ancoms 458 . . . 4 ((𝑥P𝑦P) → (𝑦<P 𝑥𝑦𝑥))
196, 16, 183orbi123d 1433 . . 3 ((𝑥P𝑦P) → ((𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2015, 19mpbird 256 . 2 ((𝑥P𝑦P) → (𝑥<P 𝑦𝑥 = 𝑦𝑦<P 𝑥))
214, 14, 20issoi 5528 1 <P Or P
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1084  w3a 1085  wcel 2108  wpss 3884   class class class wbr 5070   Or wor 5493  Pcnp 10546  <P cltp 10550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-ltpq 10597  df-enq 10598  df-nq 10599  df-ltnq 10605  df-np 10668  df-ltp 10672
This theorem is referenced by:  ltapr  10732  addcanpr  10733  suplem2pr  10740  ltsosr  10781
  Copyright terms: Public domain W3C validator