| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsopr | Structured version Visualization version GIF version | ||
| Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsopr | ⊢ <P Or P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr 4078 | . . . 4 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
| 2 | ltprord 11044 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → (𝑥<P 𝑥 ↔ 𝑥 ⊊ 𝑥)) | |
| 3 | 1, 2 | mtbiri 327 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑥 ∈ P) → ¬ 𝑥<P 𝑥) |
| 4 | 3 | anidms 566 | . 2 ⊢ (𝑥 ∈ P → ¬ 𝑥<P 𝑥) |
| 5 | psstr 4082 | . . 3 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
| 6 | ltprord 11044 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) | |
| 7 | 6 | 3adant3 1132 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑦 ↔ 𝑥 ⊊ 𝑦)) |
| 8 | ltprord 11044 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) | |
| 9 | 8 | 3adant1 1130 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦<P 𝑧 ↔ 𝑦 ⊊ 𝑧)) |
| 10 | 7, 9 | anbi12d 632 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧))) |
| 11 | ltprord 11044 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) | |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑥<P 𝑧 ↔ 𝑥 ⊊ 𝑧)) |
| 13 | 10, 12 | imbi12d 344 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → (((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
| 14 | 5, 13 | mpbiri 258 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥<P 𝑦 ∧ 𝑦<P 𝑧) → 𝑥<P 𝑧)) |
| 15 | psslinpr 11045 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
| 16 | biidd 262 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 17 | ltprord 11044 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑥 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) | |
| 18 | 17 | ancoms 458 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
| 19 | 6, 16, 18 | 3orbi123d 1437 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥))) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥<P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦<P 𝑥)) |
| 21 | 4, 14, 20 | issoi 5597 | 1 ⊢ <P Or P |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 ∈ wcel 2108 ⊊ wpss 3927 class class class wbr 5119 Or wor 5560 Pcnp 10873 <P cltp 10877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-mi 10888 df-lti 10889 df-ltpq 10924 df-enq 10925 df-nq 10926 df-ltnq 10932 df-np 10995 df-ltp 10999 |
| This theorem is referenced by: ltapr 11059 addcanpr 11060 suplem2pr 11067 ltsosr 11108 |
| Copyright terms: Public domain | W3C validator |