![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version |
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 10523). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
Ref | Expression |
---|---|
df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wor 5326 | . 2 wff 𝑅 Or 𝐴 |
4 | 1, 2 | wpo 5325 | . . 3 wff 𝑅 Po 𝐴 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1506 | . . . . . . 7 class 𝑥 |
7 | vy | . . . . . . . 8 setvar 𝑦 | |
8 | 7 | cv 1506 | . . . . . . 7 class 𝑦 |
9 | 6, 8, 2 | wbr 4930 | . . . . . 6 wff 𝑥𝑅𝑦 |
10 | 5, 7 | weq 1922 | . . . . . 6 wff 𝑥 = 𝑦 |
11 | 8, 6, 2 | wbr 4930 | . . . . . 6 wff 𝑦𝑅𝑥 |
12 | 9, 10, 11 | w3o 1067 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
13 | 12, 7, 1 | wral 3088 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
14 | 13, 5, 1 | wral 3088 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
15 | 4, 14 | wa 387 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
16 | 3, 15 | wb 198 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: nfso 5333 sopo 5345 soss 5346 soeq1 5347 solin 5351 issod 5359 so0 5362 soinxp 5484 sosn 5489 cnvso 5979 isosolem 6925 sorpss 7274 dfwe2 7314 soxp 7630 sornom 9499 zorn2lem6 9723 tosso 17507 dfso3 32470 dfso2 32510 soseq 32617 |
Copyright terms: Public domain | W3C validator |