| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version | ||
| Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11214). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
| Ref | Expression |
|---|---|
| df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wor 5530 | . 2 wff 𝑅 Or 𝐴 |
| 4 | 1, 2 | wpo 5529 | . . 3 wff 𝑅 Po 𝐴 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑥 |
| 7 | vy | . . . . . . . 8 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑦 |
| 9 | 6, 8, 2 | wbr 5095 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 10 | 5, 7 | weq 1962 | . . . . . 6 wff 𝑥 = 𝑦 |
| 11 | 8, 6, 2 | wbr 5095 | . . . . . 6 wff 𝑦𝑅𝑥 |
| 12 | 9, 10, 11 | w3o 1085 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 13 | 12, 7, 1 | wral 3044 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 14 | 13, 5, 1 | wral 3044 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 15 | 4, 14 | wa 395 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 16 | 3, 15 | wb 206 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfso 5538 sopo 5550 soss 5551 soeq1 5552 solin 5558 issod 5566 so0 5569 soinxp 5705 sosn 5710 cnvso 6240 isosolem 7288 sorpss 7668 dfwe2 7714 epweon 7715 soxp 8069 soseq 8099 sornom 10190 zorn2lem6 10414 tosso 18341 dfso3 35695 dfso2 35730 |
| Copyright terms: Public domain | W3C validator |