| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version | ||
| Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11313). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
| Ref | Expression |
|---|---|
| df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wor 5560 | . 2 wff 𝑅 Or 𝐴 |
| 4 | 1, 2 | wpo 5559 | . . 3 wff 𝑅 Po 𝐴 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑥 |
| 7 | vy | . . . . . . . 8 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑦 |
| 9 | 6, 8, 2 | wbr 5119 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 10 | 5, 7 | weq 1962 | . . . . . 6 wff 𝑥 = 𝑦 |
| 11 | 8, 6, 2 | wbr 5119 | . . . . . 6 wff 𝑦𝑅𝑥 |
| 12 | 9, 10, 11 | w3o 1085 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 13 | 12, 7, 1 | wral 3051 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 14 | 13, 5, 1 | wral 3051 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 15 | 4, 14 | wa 395 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 16 | 3, 15 | wb 206 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfso 5568 sopo 5580 soss 5581 soeq1 5582 solin 5588 issod 5596 so0 5599 soinxp 5736 sosn 5741 cnvso 6277 isosolem 7339 sorpss 7720 dfwe2 7766 epweon 7767 soxp 8126 soseq 8156 sornom 10289 zorn2lem6 10513 tosso 18427 dfso3 35683 dfso2 35718 |
| Copyright terms: Public domain | W3C validator |