Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version |
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 10913). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
Ref | Expression |
---|---|
df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wor 5467 | . 2 wff 𝑅 Or 𝐴 |
4 | 1, 2 | wpo 5466 | . . 3 wff 𝑅 Po 𝐴 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1542 | . . . . . . 7 class 𝑥 |
7 | vy | . . . . . . . 8 setvar 𝑦 | |
8 | 7 | cv 1542 | . . . . . . 7 class 𝑦 |
9 | 6, 8, 2 | wbr 5053 | . . . . . 6 wff 𝑥𝑅𝑦 |
10 | 5, 7 | weq 1971 | . . . . . 6 wff 𝑥 = 𝑦 |
11 | 8, 6, 2 | wbr 5053 | . . . . . 6 wff 𝑦𝑅𝑥 |
12 | 9, 10, 11 | w3o 1088 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
13 | 12, 7, 1 | wral 3061 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
14 | 13, 5, 1 | wral 3061 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
15 | 4, 14 | wa 399 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
16 | 3, 15 | wb 209 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: nfso 5474 sopo 5487 soss 5488 soeq1 5489 solin 5493 issod 5501 so0 5504 soinxp 5630 sosn 5635 cnvso 6151 isosolem 7156 sorpss 7516 dfwe2 7559 soxp 7896 sornom 9891 zorn2lem6 10115 tosso 17925 dfso3 33379 dfso2 33440 soseq 33540 |
Copyright terms: Public domain | W3C validator |