MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-so Structured version   Visualization version   GIF version

Definition df-so 5523
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11193). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
df-so (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Detailed syntax breakdown of Definition df-so
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wor 5521 . 2 wff 𝑅 Or 𝐴
41, 2wpo 5520 . . 3 wff 𝑅 Po 𝐴
5 vx . . . . . . . 8 setvar 𝑥
65cv 1540 . . . . . . 7 class 𝑥
7 vy . . . . . . . 8 setvar 𝑦
87cv 1540 . . . . . . 7 class 𝑦
96, 8, 2wbr 5089 . . . . . 6 wff 𝑥𝑅𝑦
105, 7weq 1963 . . . . . 6 wff 𝑥 = 𝑦
118, 6, 2wbr 5089 . . . . . 6 wff 𝑦𝑅𝑥
129, 10, 11w3o 1085 . . . . 5 wff (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1312, 7, 1wral 3047 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1413, 5, 1wral 3047 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
154, 14wa 395 . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
163, 15wb 206 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  nfso  5529  sopo  5541  soss  5542  soeq1  5543  solin  5549  issod  5557  so0  5560  soinxp  5696  sosn  5701  cnvso  6235  isosolem  7281  sorpss  7661  dfwe2  7707  epweon  7708  soxp  8059  soseq  8089  sornom  10168  zorn2lem6  10392  tosso  18323  dfso3  35764  dfso2  35799
  Copyright terms: Public domain W3C validator