| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version | ||
| Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11193). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
| Ref | Expression |
|---|---|
| df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wor 5521 | . 2 wff 𝑅 Or 𝐴 |
| 4 | 1, 2 | wpo 5520 | . . 3 wff 𝑅 Po 𝐴 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1540 | . . . . . . 7 class 𝑥 |
| 7 | vy | . . . . . . . 8 setvar 𝑦 | |
| 8 | 7 | cv 1540 | . . . . . . 7 class 𝑦 |
| 9 | 6, 8, 2 | wbr 5089 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 10 | 5, 7 | weq 1963 | . . . . . 6 wff 𝑥 = 𝑦 |
| 11 | 8, 6, 2 | wbr 5089 | . . . . . 6 wff 𝑦𝑅𝑥 |
| 12 | 9, 10, 11 | w3o 1085 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 13 | 12, 7, 1 | wral 3047 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 14 | 13, 5, 1 | wral 3047 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 15 | 4, 14 | wa 395 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 16 | 3, 15 | wb 206 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfso 5529 sopo 5541 soss 5542 soeq1 5543 solin 5549 issod 5557 so0 5560 soinxp 5696 sosn 5701 cnvso 6235 isosolem 7281 sorpss 7661 dfwe2 7707 epweon 7708 soxp 8059 soseq 8089 sornom 10168 zorn2lem6 10392 tosso 18323 dfso3 35764 dfso2 35799 |
| Copyright terms: Public domain | W3C validator |