MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-so Structured version   Visualization version   GIF version

Definition df-so 5547
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11254). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
df-so (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Detailed syntax breakdown of Definition df-so
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wor 5545 . 2 wff 𝑅 Or 𝐴
41, 2wpo 5544 . . 3 wff 𝑅 Po 𝐴
5 vx . . . . . . . 8 setvar 𝑥
65cv 1539 . . . . . . 7 class 𝑥
7 vy . . . . . . . 8 setvar 𝑦
87cv 1539 . . . . . . 7 class 𝑦
96, 8, 2wbr 5107 . . . . . 6 wff 𝑥𝑅𝑦
105, 7weq 1962 . . . . . 6 wff 𝑥 = 𝑦
118, 6, 2wbr 5107 . . . . . 6 wff 𝑦𝑅𝑥
129, 10, 11w3o 1085 . . . . 5 wff (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1312, 7, 1wral 3044 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1413, 5, 1wral 3044 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
154, 14wa 395 . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
163, 15wb 206 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  nfso  5553  sopo  5565  soss  5566  soeq1  5567  solin  5573  issod  5581  so0  5584  soinxp  5720  sosn  5725  cnvso  6261  isosolem  7322  sorpss  7704  dfwe2  7750  epweon  7751  soxp  8108  soseq  8138  sornom  10230  zorn2lem6  10454  tosso  18378  dfso3  35707  dfso2  35742
  Copyright terms: Public domain W3C validator