![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version |
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11370). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
Ref | Expression |
---|---|
df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wor 5606 | . 2 wff 𝑅 Or 𝐴 |
4 | 1, 2 | wpo 5605 | . . 3 wff 𝑅 Po 𝐴 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1536 | . . . . . . 7 class 𝑥 |
7 | vy | . . . . . . . 8 setvar 𝑦 | |
8 | 7 | cv 1536 | . . . . . . 7 class 𝑦 |
9 | 6, 8, 2 | wbr 5166 | . . . . . 6 wff 𝑥𝑅𝑦 |
10 | 5, 7 | weq 1962 | . . . . . 6 wff 𝑥 = 𝑦 |
11 | 8, 6, 2 | wbr 5166 | . . . . . 6 wff 𝑦𝑅𝑥 |
12 | 9, 10, 11 | w3o 1086 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
13 | 12, 7, 1 | wral 3067 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
14 | 13, 5, 1 | wral 3067 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
15 | 4, 14 | wa 395 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
16 | 3, 15 | wb 206 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: nfso 5614 sopo 5627 soss 5628 soeq1 5629 solin 5634 issod 5642 so0 5645 soinxp 5781 sosn 5786 cnvso 6319 isosolem 7383 sorpss 7763 dfwe2 7809 epweon 7810 soxp 8170 soseq 8200 sornom 10346 zorn2lem6 10570 tosso 18489 dfso3 35682 dfso2 35717 |
Copyright terms: Public domain | W3C validator |