MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-so Structured version   Visualization version   GIF version

Definition df-so 5495
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 10986). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
df-so (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Detailed syntax breakdown of Definition df-so
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wor 5493 . 2 wff 𝑅 Or 𝐴
41, 2wpo 5492 . . 3 wff 𝑅 Po 𝐴
5 vx . . . . . . . 8 setvar 𝑥
65cv 1538 . . . . . . 7 class 𝑥
7 vy . . . . . . . 8 setvar 𝑦
87cv 1538 . . . . . . 7 class 𝑦
96, 8, 2wbr 5070 . . . . . 6 wff 𝑥𝑅𝑦
105, 7weq 1967 . . . . . 6 wff 𝑥 = 𝑦
118, 6, 2wbr 5070 . . . . . 6 wff 𝑦𝑅𝑥
129, 10, 11w3o 1084 . . . . 5 wff (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1312, 7, 1wral 3063 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1413, 5, 1wral 3063 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
154, 14wa 395 . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
163, 15wb 205 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  nfso  5500  sopo  5513  soss  5514  soeq1  5515  solin  5519  issod  5527  so0  5530  soinxp  5659  sosn  5664  cnvso  6180  isosolem  7198  sorpss  7559  dfwe2  7602  soxp  7941  sornom  9964  zorn2lem6  10188  tosso  18052  dfso3  33566  dfso2  33628  soseq  33730
  Copyright terms: Public domain W3C validator