Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version |
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 10986). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
Ref | Expression |
---|---|
df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wor 5493 | . 2 wff 𝑅 Or 𝐴 |
4 | 1, 2 | wpo 5492 | . . 3 wff 𝑅 Po 𝐴 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1538 | . . . . . . 7 class 𝑥 |
7 | vy | . . . . . . . 8 setvar 𝑦 | |
8 | 7 | cv 1538 | . . . . . . 7 class 𝑦 |
9 | 6, 8, 2 | wbr 5070 | . . . . . 6 wff 𝑥𝑅𝑦 |
10 | 5, 7 | weq 1967 | . . . . . 6 wff 𝑥 = 𝑦 |
11 | 8, 6, 2 | wbr 5070 | . . . . . 6 wff 𝑦𝑅𝑥 |
12 | 9, 10, 11 | w3o 1084 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
13 | 12, 7, 1 | wral 3063 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
14 | 13, 5, 1 | wral 3063 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
15 | 4, 14 | wa 395 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
16 | 3, 15 | wb 205 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: nfso 5500 sopo 5513 soss 5514 soeq1 5515 solin 5519 issod 5527 so0 5530 soinxp 5659 sosn 5664 cnvso 6180 isosolem 7198 sorpss 7559 dfwe2 7602 soxp 7941 sornom 9964 zorn2lem6 10188 tosso 18052 dfso3 33566 dfso2 33628 soseq 33730 |
Copyright terms: Public domain | W3C validator |