| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-so | Structured version Visualization version GIF version | ||
| Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11254). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.) |
| Ref | Expression |
|---|---|
| df-so | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wor 5545 | . 2 wff 𝑅 Or 𝐴 |
| 4 | 1, 2 | wpo 5544 | . . 3 wff 𝑅 Po 𝐴 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑥 |
| 7 | vy | . . . . . . . 8 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑦 |
| 9 | 6, 8, 2 | wbr 5107 | . . . . . 6 wff 𝑥𝑅𝑦 |
| 10 | 5, 7 | weq 1962 | . . . . . 6 wff 𝑥 = 𝑦 |
| 11 | 8, 6, 2 | wbr 5107 | . . . . . 6 wff 𝑦𝑅𝑥 |
| 12 | 9, 10, 11 | w3o 1085 | . . . . 5 wff (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 13 | 12, 7, 1 | wral 3044 | . . . 4 wff ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 14 | 13, 5, 1 | wral 3044 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
| 15 | 4, 14 | wa 395 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 16 | 3, 15 | wb 206 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nfso 5553 sopo 5565 soss 5566 soeq1 5567 solin 5573 issod 5581 so0 5584 soinxp 5720 sosn 5725 cnvso 6261 isosolem 7322 sorpss 7704 dfwe2 7750 epweon 7751 soxp 8108 soseq 8138 sornom 10230 zorn2lem6 10454 tosso 18378 dfso3 35707 dfso2 35742 |
| Copyright terms: Public domain | W3C validator |