MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-so Structured version   Visualization version   GIF version

Definition df-so 5590
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11294). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
df-so (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Detailed syntax breakdown of Definition df-so
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wor 5588 . 2 wff 𝑅 Or 𝐴
41, 2wpo 5587 . . 3 wff 𝑅 Po 𝐴
5 vx . . . . . . . 8 setvar 𝑥
65cv 1541 . . . . . . 7 class 𝑥
7 vy . . . . . . . 8 setvar 𝑦
87cv 1541 . . . . . . 7 class 𝑦
96, 8, 2wbr 5149 . . . . . 6 wff 𝑥𝑅𝑦
105, 7weq 1967 . . . . . 6 wff 𝑥 = 𝑦
118, 6, 2wbr 5149 . . . . . 6 wff 𝑦𝑅𝑥
129, 10, 11w3o 1087 . . . . 5 wff (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1312, 7, 1wral 3062 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1413, 5, 1wral 3062 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
154, 14wa 397 . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
163, 15wb 205 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  nfso  5595  sopo  5608  soss  5609  soeq1  5610  solin  5614  issod  5622  so0  5625  soinxp  5758  sosn  5763  cnvso  6288  isosolem  7344  sorpss  7718  dfwe2  7761  epweon  7762  soxp  8115  soseq  8145  sornom  10272  zorn2lem6  10496  tosso  18372  dfso3  34689  dfso2  34725
  Copyright terms: Public domain W3C validator