MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-so Structured version   Visualization version   GIF version

Definition df-so 5505
Description: Define the strict complete (linear) order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. For example, < Or ℝ is true (ltso 11064). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
df-so (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Detailed syntax breakdown of Definition df-so
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wor 5503 . 2 wff 𝑅 Or 𝐴
41, 2wpo 5502 . . 3 wff 𝑅 Po 𝐴
5 vx . . . . . . . 8 setvar 𝑥
65cv 1538 . . . . . . 7 class 𝑥
7 vy . . . . . . . 8 setvar 𝑦
87cv 1538 . . . . . . 7 class 𝑦
96, 8, 2wbr 5075 . . . . . 6 wff 𝑥𝑅𝑦
105, 7weq 1967 . . . . . 6 wff 𝑥 = 𝑦
118, 6, 2wbr 5075 . . . . . 6 wff 𝑦𝑅𝑥
129, 10, 11w3o 1085 . . . . 5 wff (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1312, 7, 1wral 3065 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
1413, 5, 1wral 3065 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
154, 14wa 396 . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
163, 15wb 205 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  nfso  5510  sopo  5523  soss  5524  soeq1  5525  solin  5529  issod  5537  so0  5540  soinxp  5669  sosn  5674  cnvso  6195  isosolem  7227  sorpss  7590  dfwe2  7633  epweon  7634  soxp  7979  sornom  10042  zorn2lem6  10266  tosso  18146  dfso3  33673  dfso2  33731  soseq  33812
  Copyright terms: Public domain W3C validator