| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mndoissmgrpOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of mndsgrp 18648 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| mndoissmgrpOLD | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . . 3 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId )) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) → 𝐺 ∈ SemiGrp) |
| 3 | df-mndo 37915 | . 2 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
| 4 | 2, 3 | eleq2s 2849 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3896 ExId cexid 37892 SemiGrpcsem 37908 MndOpcmndo 37914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-mndo 37915 |
| This theorem is referenced by: mndoismgmOLD 37918 |
| Copyright terms: Public domain | W3C validator |