Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndoissmgrpOLD Structured version   Visualization version   GIF version

Theorem mndoissmgrpOLD 35953
Description: Obsolete version of mndsgrp 18306 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mndoissmgrpOLD (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp)

Proof of Theorem mndoissmgrpOLD
StepHypRef Expression
1 elin 3899 . . 3 (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ))
21simplbi 497 . 2 (𝐺 ∈ (SemiGrp ∩ ExId ) → 𝐺 ∈ SemiGrp)
3 df-mndo 35952 . 2 MndOp = (SemiGrp ∩ ExId )
42, 3eleq2s 2857 1 (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cin 3882   ExId cexid 35929  SemiGrpcsem 35945  MndOpcmndo 35951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-mndo 35952
This theorem is referenced by:  mndoismgmOLD  35955
  Copyright terms: Public domain W3C validator