Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndoissmgrpOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mndsgrp 18306 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mndoissmgrpOLD | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . 3 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId )) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) → 𝐺 ∈ SemiGrp) |
3 | df-mndo 35952 | . 2 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
4 | 2, 3 | eleq2s 2857 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3882 ExId cexid 35929 SemiGrpcsem 35945 MndOpcmndo 35951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-mndo 35952 |
This theorem is referenced by: mndoismgmOLD 35955 |
Copyright terms: Public domain | W3C validator |