![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndoissmgrpOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mndsgrp 17507 as of 3-Feb-2020. A monoid is a semi-group. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mndoissmgrpOLD | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3947 | . . 3 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId )) | |
2 | 1 | simplbi 485 | . 2 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) → 𝐺 ∈ SemiGrp) |
3 | df-mndo 33998 | . 2 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
4 | 2, 3 | eleq2s 2868 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ∩ cin 3722 ExId cexid 33975 SemiGrpcsem 33991 MndOpcmndo 33997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-in 3730 df-mndo 33998 |
This theorem is referenced by: mndoismgmOLD 34001 |
Copyright terms: Public domain | W3C validator |