Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndoissmgrpOLD Structured version   Visualization version   GIF version

Theorem mndoissmgrpOLD 37869
Description: Obsolete version of mndsgrp 18674 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mndoissmgrpOLD (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp)

Proof of Theorem mndoissmgrpOLD
StepHypRef Expression
1 elin 3933 . . 3 (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ))
21simplbi 497 . 2 (𝐺 ∈ (SemiGrp ∩ ExId ) → 𝐺 ∈ SemiGrp)
3 df-mndo 37868 . 2 MndOp = (SemiGrp ∩ ExId )
42, 3eleq2s 2847 1 (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3916   ExId cexid 37845  SemiGrpcsem 37861  MndOpcmndo 37867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-mndo 37868
This theorem is referenced by:  mndoismgmOLD  37871
  Copyright terms: Public domain W3C validator