Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndoisexid | Structured version Visualization version GIF version |
Description: A monoid has an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mndoisexid | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4129 | . 2 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) → 𝐺 ∈ ExId ) | |
2 | df-mndo 36033 | . 2 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
3 | 1, 2 | eleq2s 2857 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3885 ExId cexid 36010 SemiGrpcsem 36026 MndOpcmndo 36032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-in 3893 df-mndo 36033 |
This theorem is referenced by: mndomgmid 36037 rngo1cl 36105 |
Copyright terms: Public domain | W3C validator |