Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndoismgmOLD Structured version   Visualization version   GIF version

Theorem mndoismgmOLD 37899
Description: Obsolete version of mndmgm 18724 as of 3-Feb-2020. A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mndoismgmOLD (𝐺 ∈ MndOp → 𝐺 ∈ Magma)

Proof of Theorem mndoismgmOLD
StepHypRef Expression
1 mndoissmgrpOLD 37897 . 2 (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp)
2 smgrpismgmOLD 37891 . 2 (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma)
31, 2syl 17 1 (𝐺 ∈ MndOp → 𝐺 ∈ Magma)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Magmacmagm 37877  SemiGrpcsem 37889  MndOpcmndo 37895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-in 3938  df-sgrOLD 37890  df-mndo 37896
This theorem is referenced by:  mndomgmid  37900  rngo1cl  37968  isdrngo2  37987
  Copyright terms: Public domain W3C validator