MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndsgrp Structured version   Visualization version   GIF version

Theorem mndsgrp 18735
Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
Assertion
Ref Expression
mndsgrp (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)

Proof of Theorem mndsgrp
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2726 . . 3 (+g𝐺) = (+g𝐺)
31, 2ismnddef 18731 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
43simplbi 496 1 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  cfv 6556  (class class class)co 7426  Basecbs 17215  +gcplusg 17268  Smgrpcsgrp 18713  Mndcmnd 18729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-nul 5313
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-iota 6508  df-fv 6564  df-ov 7429  df-mnd 18730
This theorem is referenced by:  mndmgm  18736  mndass  18738  gsumccat  18833  mndsssgrp  18926  grpsgrp  18957  mulgnn0dir  19100  mulgnn0ass  19106  ringrng  20266  fidomncyc  42205
  Copyright terms: Public domain W3C validator