| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndsgrp | Structured version Visualization version GIF version | ||
| Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndsgrp | ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | ismnddef 18646 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Smgrpcsgrp 18628 Mndcmnd 18644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-mnd 18645 |
| This theorem is referenced by: mndmgm 18651 mndass 18653 gsumccat 18751 mndsssgrp 18844 grpsgrp 18875 mulgnn0dir 19019 mulgnn0ass 19025 ringrng 20205 fidomncyc 42653 |
| Copyright terms: Public domain | W3C validator |