| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndsgrp | Structured version Visualization version GIF version | ||
| Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndsgrp | ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | ismnddef 18663 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Smgrpcsgrp 18645 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mnd 18662 |
| This theorem is referenced by: mndmgm 18668 mndass 18670 gsumccat 18768 mndsssgrp 18861 grpsgrp 18892 mulgnn0dir 19036 mulgnn0ass 19042 ringrng 20194 fidomncyc 42523 |
| Copyright terms: Public domain | W3C validator |