MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndsgrp Structured version   Visualization version   GIF version

Theorem mndsgrp 18630
Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
Assertion
Ref Expression
mndsgrp (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)

Proof of Theorem mndsgrp
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2732 . . 3 (+g𝐺) = (+g𝐺)
31, 2ismnddef 18626 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
43simplbi 498 1 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  Smgrpcsgrp 18608  Mndcmnd 18624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-mnd 18625
This theorem is referenced by:  mndmgm  18631  mndass  18633  gsumccat  18721  mndsssgrp  18814  grpsgrp  18845  mulgnn0dir  18983  mulgnn0ass  18989  ringrng  46645
  Copyright terms: Public domain W3C validator