MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndsgrp Structured version   Visualization version   GIF version

Theorem mndsgrp 18645
Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
Assertion
Ref Expression
mndsgrp (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)

Proof of Theorem mndsgrp
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2731 . . 3 (+g𝐺) = (+g𝐺)
31, 2ismnddef 18641 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
43simplbi 497 1 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  Smgrpcsgrp 18623  Mndcmnd 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-mnd 18640
This theorem is referenced by:  mndmgm  18646  mndass  18648  gsumccat  18746  mndsssgrp  18839  grpsgrp  18870  mulgnn0dir  19014  mulgnn0ass  19020  ringrng  20201  fidomncyc  42567
  Copyright terms: Public domain W3C validator