![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moan | Structured version Visualization version GIF version |
Description: "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
moan | ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
2 | 1 | moimi 2669 | 1 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∃*wmo 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-10 2174 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ex 1853 df-nf 1858 df-eu 2622 df-mo 2623 |
This theorem is referenced by: moani 2674 mooran1 2676 moanim 2678 mormo 3307 rmoan 3558 |
Copyright terms: Public domain | W3C validator |