MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moan Structured version   Visualization version   GIF version

Theorem moan 2552
Description: "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moan (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))

Proof of Theorem moan
StepHypRef Expression
1 simpr 484 . 2 ((𝜓𝜑) → 𝜑)
21moimi 2545 1 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-mo 2540
This theorem is referenced by:  moani  2553  mooran1  2555  moanimlem  2620  mormo  3350  rmoan  3669
  Copyright terms: Public domain W3C validator