![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mormo | Structured version Visualization version GIF version |
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
mormo | ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moan 2544 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rmo 3374 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∃*wmo 2530 ∃*wrmo 3373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-mo 2532 df-rmo 3374 |
This theorem is referenced by: reueq 3732 reusv1 5394 brdom4 10527 phpreu 36775 |
Copyright terms: Public domain | W3C validator |