| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mormo | Structured version Visualization version GIF version | ||
| Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| mormo | ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moan 2546 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rmo 3356 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃*wmo 2532 ∃*wrmo 3355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-rmo 3356 |
| This theorem is referenced by: reueq 3711 reusv1 5355 brdom4 10490 phpreu 37605 |
| Copyright terms: Public domain | W3C validator |