MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mormo Structured version   Visualization version   GIF version

Theorem mormo 3384
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem mormo
StepHypRef Expression
1 moan 2551 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝑥𝐴𝜑))
2 df-rmo 3379 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
31, 2sylibr 234 1 (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ∃*wmo 2537  ∃*wrmo 3378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2539  df-rmo 3379
This theorem is referenced by:  reueq  3742  reusv1  5396  brdom4  10571  phpreu  37612
  Copyright terms: Public domain W3C validator