MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanimlem Structured version   Visualization version   GIF version

Theorem moanimlem 2620
Description: Factor out the common proof skeleton of moanimv 2621 and moanim 2622. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 24-Dec-2018.) Factor out common proof lines. (Revised by Wolf Lammen, 8-Feb-2023.)
Hypotheses
Ref Expression
moanimlem.1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))
moanimlem.2 (∃𝑥(𝜑𝜓) → 𝜑)
Assertion
Ref Expression
moanimlem (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))

Proof of Theorem moanimlem
StepHypRef Expression
1 moanimlem.1 . . 3 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))
21biimprcd 249 . 2 (∃*𝑥(𝜑𝜓) → (𝜑 → ∃*𝑥𝜓))
3 moanimlem.2 . . . 4 (∃𝑥(𝜑𝜓) → 𝜑)
4 nexmo 2541 . . . 4 (¬ ∃𝑥(𝜑𝜓) → ∃*𝑥(𝜑𝜓))
53, 4nsyl5 159 . . 3 𝜑 → ∃*𝑥(𝜑𝜓))
6 moan 2552 . . 3 (∃*𝑥𝜓 → ∃*𝑥(𝜑𝜓))
75, 6ja 186 . 2 ((𝜑 → ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))
82, 7impbii 208 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-mo 2540
This theorem is referenced by:  moanimv  2621  moanim  2622
  Copyright terms: Public domain W3C validator