|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > moanimlem | Structured version Visualization version GIF version | ||
| Description: Factor out the common proof skeleton of moanimv 2619 and moanim 2620. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 24-Dec-2018.) Factor out common proof lines. (Revised by Wolf Lammen, 8-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| moanimlem.1 | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) | 
| moanimlem.2 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) | 
| Ref | Expression | 
|---|---|
| moanimlem | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | moanimlem.1 | . . 3 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑 ∧ 𝜓))) | |
| 2 | 1 | biimprcd 250 | . 2 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) → (𝜑 → ∃*𝑥𝜓)) | 
| 3 | moanimlem.2 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | nexmo 2541 | . . . 4 ⊢ (¬ ∃𝑥(𝜑 ∧ 𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) | |
| 5 | 3, 4 | nsyl5 159 | . . 3 ⊢ (¬ 𝜑 → ∃*𝑥(𝜑 ∧ 𝜓)) | 
| 6 | moan 2552 | . . 3 ⊢ (∃*𝑥𝜓 → ∃*𝑥(𝜑 ∧ 𝜓)) | |
| 7 | 5, 6 | ja 186 | . 2 ⊢ ((𝜑 → ∃*𝑥𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) | 
| 8 | 2, 7 | impbii 209 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 | 
| This theorem is referenced by: moanimv 2619 moanim 2620 | 
| Copyright terms: Public domain | W3C validator |