MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoan Structured version   Visualization version   GIF version

Theorem rmoan 3748
Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmoan (∃*𝑥𝐴 𝜑 → ∃*𝑥𝐴 (𝜓𝜑))

Proof of Theorem rmoan
StepHypRef Expression
1 moan 2550 . . 3 (∃*𝑥(𝑥𝐴𝜑) → ∃*𝑥(𝜓 ∧ (𝑥𝐴𝜑)))
2 an12 645 . . . 4 ((𝜓 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝜓𝜑)))
32mobii 2546 . . 3 (∃*𝑥(𝜓 ∧ (𝑥𝐴𝜑)) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
41, 3sylib 218 . 2 (∃*𝑥(𝑥𝐴𝜑) → ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
5 df-rmo 3378 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
6 df-rmo 3378 . 2 (∃*𝑥𝐴 (𝜓𝜑) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
74, 5, 63imtr4i 292 1 (∃*𝑥𝐴 𝜑 → ∃*𝑥𝐴 (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  ∃*wmo 2536  ∃*wrmo 3377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-mo 2538  df-rmo 3378
This theorem is referenced by:  reuxfrd  3757  reuxfrdf  32519
  Copyright terms: Public domain W3C validator