| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnvmo | Structured version Visualization version GIF version | ||
| Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| funressnvmo | ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6554 | . 2 ⊢ (Fun (𝐹 ↾ {𝑥}) ↔ (Rel (𝐹 ↾ {𝑥}) ∧ ∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦)) | |
| 2 | breq1 5126 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ 𝑧(𝐹 ↾ {𝑥})𝑦)) | |
| 3 | 2 | equcoms 2018 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ 𝑧(𝐹 ↾ {𝑥})𝑦)) |
| 4 | 3 | biimpd 229 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦 → 𝑧(𝐹 ↾ {𝑥})𝑦)) |
| 5 | 4 | moimdv 2544 | . . . 4 ⊢ (𝑧 = 𝑥 → (∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦)) |
| 6 | 5 | spimvw 1994 | . . 3 ⊢ (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦) |
| 7 | vsnid 4643 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥} | |
| 8 | vex 3467 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 8 | brresi 5986 | . . . . . 6 ⊢ (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ (𝑥 ∈ {𝑥} ∧ 𝑥𝐹𝑦)) |
| 10 | 7, 9 | mpbiran 709 | . . . . 5 ⊢ (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ 𝑥𝐹𝑦) |
| 11 | 10 | biimpri 228 | . . . 4 ⊢ (𝑥𝐹𝑦 → 𝑥(𝐹 ↾ {𝑥})𝑦) |
| 12 | 11 | moimi 2543 | . . 3 ⊢ (∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦) |
| 13 | 6, 12 | syl 17 | . 2 ⊢ (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦) |
| 14 | 1, 13 | simplbiim 504 | 1 ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 ∃*wmo 2536 {csn 4606 class class class wbr 5123 ↾ cres 5667 Rel wrel 5670 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-res 5677 df-fun 6543 |
| This theorem is referenced by: funressnmo 47016 funressndmafv2rn 47193 |
| Copyright terms: Public domain | W3C validator |