Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnvmo Structured version   Visualization version   GIF version

Theorem funressnvmo 45755
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressnvmo (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funressnvmo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun6 6557 . 2 (Fun (𝐹 ↾ {𝑥}) ↔ (Rel (𝐹 ↾ {𝑥}) ∧ ∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦))
2 breq1 5152 . . . . . . 7 (𝑥 = 𝑧 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
32equcoms 2024 . . . . . 6 (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
43biimpd 228 . . . . 5 (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
54moimdv 2541 . . . 4 (𝑧 = 𝑥 → (∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦))
65spimvw 2000 . . 3 (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦)
7 vsnid 4666 . . . . . 6 𝑥 ∈ {𝑥}
8 vex 3479 . . . . . . 7 𝑦 ∈ V
98brresi 5991 . . . . . 6 (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ (𝑥 ∈ {𝑥} ∧ 𝑥𝐹𝑦))
107, 9mpbiran 708 . . . . 5 (𝑥(𝐹 ↾ {𝑥})𝑦𝑥𝐹𝑦)
1110biimpri 227 . . . 4 (𝑥𝐹𝑦𝑥(𝐹 ↾ {𝑥})𝑦)
1211moimi 2540 . . 3 (∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦)
136, 12syl 17 . 2 (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦)
141, 13simplbiim 506 1 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540  wcel 2107  ∃*wmo 2533  {csn 4629   class class class wbr 5149  cres 5679  Rel wrel 5682  Fun wfun 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-res 5689  df-fun 6546
This theorem is referenced by:  funressnmo  45756  funressndmafv2rn  45931
  Copyright terms: Public domain W3C validator