Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnvmo Structured version   Visualization version   GIF version

Theorem funressnvmo 46962
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressnvmo (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funressnvmo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun6 6588 . 2 (Fun (𝐹 ↾ {𝑥}) ↔ (Rel (𝐹 ↾ {𝑥}) ∧ ∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦))
2 breq1 5169 . . . . . . 7 (𝑥 = 𝑧 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
32equcoms 2019 . . . . . 6 (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
43biimpd 229 . . . . 5 (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
54moimdv 2549 . . . 4 (𝑧 = 𝑥 → (∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦))
65spimvw 1995 . . 3 (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦)
7 vsnid 4685 . . . . . 6 𝑥 ∈ {𝑥}
8 vex 3492 . . . . . . 7 𝑦 ∈ V
98brresi 6020 . . . . . 6 (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ (𝑥 ∈ {𝑥} ∧ 𝑥𝐹𝑦))
107, 9mpbiran 708 . . . . 5 (𝑥(𝐹 ↾ {𝑥})𝑦𝑥𝐹𝑦)
1110biimpri 228 . . . 4 (𝑥𝐹𝑦𝑥(𝐹 ↾ {𝑥})𝑦)
1211moimi 2548 . . 3 (∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦)
136, 12syl 17 . 2 (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦)
141, 13simplbiim 504 1 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  ∃*wmo 2541  {csn 4648   class class class wbr 5166  cres 5702  Rel wrel 5705  Fun wfun 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-res 5712  df-fun 6577
This theorem is referenced by:  funressnmo  46963  funressndmafv2rn  47140
  Copyright terms: Public domain W3C validator