Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnvmo Structured version   Visualization version   GIF version

Theorem funressnvmo 43637
Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressnvmo (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funressnvmo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffun6 6339 . 2 (Fun (𝐹 ↾ {𝑥}) ↔ (Rel (𝐹 ↾ {𝑥}) ∧ ∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦))
2 breq1 5033 . . . . . . 7 (𝑥 = 𝑧 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
32equcoms 2027 . . . . . 6 (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
43biimpd 232 . . . . 5 (𝑧 = 𝑥 → (𝑥(𝐹 ↾ {𝑥})𝑦𝑧(𝐹 ↾ {𝑥})𝑦))
54moimdv 2604 . . . 4 (𝑧 = 𝑥 → (∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦))
65spimvw 2002 . . 3 (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦)
7 vsnid 4562 . . . . . 6 𝑥 ∈ {𝑥}
8 vex 3444 . . . . . . 7 𝑦 ∈ V
98brresi 5827 . . . . . 6 (𝑥(𝐹 ↾ {𝑥})𝑦 ↔ (𝑥 ∈ {𝑥} ∧ 𝑥𝐹𝑦))
107, 9mpbiran 708 . . . . 5 (𝑥(𝐹 ↾ {𝑥})𝑦𝑥𝐹𝑦)
1110biimpri 231 . . . 4 (𝑥𝐹𝑦𝑥(𝐹 ↾ {𝑥})𝑦)
1211moimi 2603 . . 3 (∃*𝑦 𝑥(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦)
136, 12syl 17 . 2 (∀𝑧∃*𝑦 𝑧(𝐹 ↾ {𝑥})𝑦 → ∃*𝑦 𝑥𝐹𝑦)
141, 13simplbiim 508 1 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536  wcel 2111  ∃*wmo 2596  {csn 4525   class class class wbr 5030  cres 5521  Rel wrel 5524  Fun wfun 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-cnv 5527  df-co 5528  df-res 5531  df-fun 6326
This theorem is referenced by:  funressnmo  43638  funressndmafv2rn  43779
  Copyright terms: Public domain W3C validator