Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnfv Structured version   Visualization version   GIF version

Theorem funressnfv 47039
Description: A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
funressnfv (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))

Proof of Theorem funressnfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5997 . . 3 Rel (𝐹 ↾ {(𝐺𝑋)})
21a1i 11 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Rel (𝐹 ↾ {(𝐺𝑋)}))
3 dmfco 6980 . . . . . . . . 9 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
43biimpd 229 . . . . . . . 8 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
54funfni 6649 . . . . . . 7 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
6 dmressnsn 6015 . . . . . . . 8 ((𝐺𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)})
7 eleq2 2824 . . . . . . . . . 10 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) ↔ 𝑥 ∈ {(𝐺𝑋)}))
8 velsn 4622 . . . . . . . . . . 11 (𝑥 ∈ {(𝐺𝑋)} ↔ 𝑥 = (𝐺𝑋))
9 dmressnsn 6015 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ dom (𝐹𝐺) → dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋})
10 dffun7 6568 . . . . . . . . . . . . . . . . . . 19 (Fun ((𝐹𝐺) ↾ {𝑋}) ↔ (Rel ((𝐹𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
11 snidg 4641 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ dom (𝐹𝐺) → 𝑋 ∈ {𝑋})
1211adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ {𝑋})
13 eleq2 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝑋} = dom ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1413eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1514adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1612, 15mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋}))
17 fvex 6894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐺𝑋) ∈ V
1817isseti 3482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑧 𝑧 = (𝐺𝑋)
19 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 = (𝐺𝑋) ↔ (𝐺𝑋) = 𝑧)
20 fnbrfvb 6934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) = 𝑧𝑋𝐺𝑧))
2119, 20bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) ↔ 𝑋𝐺𝑧))
2221biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) → 𝑋𝐺𝑧))
23 breq1 5127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺𝑋) = 𝑧 → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2423eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝐺𝑋) → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2524biimpcd 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑋)𝐹𝑦 → (𝑧 = (𝐺𝑋) → 𝑧𝐹𝑦))
2622, 25anim12ii 618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑧 = (𝐺𝑋) → (𝑋𝐺𝑧𝑧𝐹𝑦)))
2726eximdv 1917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (∃𝑧 𝑧 = (𝐺𝑋) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
2818, 27mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦))
29 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋𝐴)
30 vex 3468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ∈ V
31 brcog 5851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑋𝐴𝑦 ∈ V) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3229, 30, 31sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3332adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3428, 33mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋(𝐹𝐺)𝑦)
3530brresi 5980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋((𝐹𝐺) ↾ {𝑋})𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹𝐺)𝑦))
36 snidg 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑋𝐴𝑋 ∈ {𝑋})
3736biantrurd 532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋𝐴 → (𝑋(𝐹𝐺)𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹𝐺)𝑦)))
3835, 37bitr4id 290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑋𝐴 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
3938ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
4034, 39mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋((𝐹𝐺) ↾ {𝑋})𝑦)
4140ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
43 breq1 5127 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 = 𝑥 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4443eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑋 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4544ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4642, 45sylibd 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4746moimdv 2546 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦))
4847ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → ((𝐺 Fn 𝐴𝑋𝐴) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
4948com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5016, 49rspcimdv 3596 . . . . . . . . . . . . . . . . . . . . 21 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5150ex 412 . . . . . . . . . . . . . . . . . . . 20 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5251com13 88 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5310, 52simplbiim 504 . . . . . . . . . . . . . . . . . 18 (Fun ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5453com13 88 . . . . . . . . . . . . . . . . 17 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
559, 54mpcom 38 . . . . . . . . . . . . . . . 16 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5655imp31 417 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦(𝐺𝑋)𝐹𝑦)
5717snid 4643 . . . . . . . . . . . . . . . . . 18 (𝐺𝑋) ∈ {(𝐺𝑋)}
5857biantrur 530 . . . . . . . . . . . . . . . . 17 ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
5958a1i 11 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦)))
6059mobidv 2549 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦(𝐺𝑋)𝐹𝑦 ↔ ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦)))
6156, 60mpbid 232 . . . . . . . . . . . . . 14 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
6261adantl 481 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
63 breq1 5127 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐺𝑋) → (𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ (𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦))
6430brresi 5980 . . . . . . . . . . . . . . . 16 ((𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
6563, 64bitr2di 288 . . . . . . . . . . . . . . 15 (𝑥 = (𝐺𝑋) → (((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6665adantr 480 . . . . . . . . . . . . . 14 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6766mobidv 2549 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6862, 67mpbid 232 . . . . . . . . . . . 12 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
6968ex 412 . . . . . . . . . . 11 (𝑥 = (𝐺𝑋) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
708, 69sylbi 217 . . . . . . . . . 10 (𝑥 ∈ {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
717, 70biimtrdi 253 . . . . . . . . 9 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
7271com23 86 . . . . . . . 8 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
736, 72syl 17 . . . . . . 7 ((𝐺𝑋) ∈ dom 𝐹 → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
745, 73syl6com 37 . . . . . 6 (𝑋 ∈ dom (𝐹𝐺) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))))
7574a1d 25 . . . . 5 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))))
7675imp31 417 . . . 4 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
7776pm2.43i 52 . . 3 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
7877ralrimiv 3132 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
79 dffun7 6568 . 2 (Fun (𝐹 ↾ {(𝐺𝑋)}) ↔ (Rel (𝐹 ↾ {(𝐺𝑋)}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
802, 78, 79sylanbrc 583 1 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2538  wral 3052  Vcvv 3464  {csn 4606   class class class wbr 5124  dom cdm 5659  cres 5661  ccom 5663  Rel wrel 5664  Fun wfun 6530   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544
This theorem is referenced by:  afvco2  47172
  Copyright terms: Public domain W3C validator