Step | Hyp | Ref
| Expression |
1 | | relres 5932 |
. . 3
⊢ Rel
(𝐹 ↾ {(𝐺‘𝑋)}) |
2 | 1 | a1i 11 |
. 2
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Rel (𝐹 ↾ {(𝐺‘𝑋)})) |
3 | | dmfco 6896 |
. . . . . . . . 9
⊢ ((Fun
𝐺 ∧ 𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺‘𝑋) ∈ dom 𝐹)) |
4 | 3 | biimpd 228 |
. . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (𝐺‘𝑋) ∈ dom 𝐹)) |
5 | 4 | funfni 6570 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (𝐺‘𝑋) ∈ dom 𝐹)) |
6 | | dmressnsn 5945 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)}) |
7 | | eleq2 2825 |
. . . . . . . . . 10
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) ↔ 𝑥 ∈ {(𝐺‘𝑋)})) |
8 | | velsn 4581 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {(𝐺‘𝑋)} ↔ 𝑥 = (𝐺‘𝑋)) |
9 | | dmressnsn 5945 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋}) |
10 | | dffun7 6490 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Fun
((𝐹 ∘ 𝐺) ↾ {𝑋}) ↔ (Rel ((𝐹 ∘ 𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
11 | | snidg 4599 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → 𝑋 ∈ {𝑋}) |
12 | 11 | adantl 483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → 𝑋 ∈ {𝑋}) |
13 | | eleq2 2825 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ({𝑋} = dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋}))) |
14 | 13 | eqcoms 2744 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋}))) |
15 | 14 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋}))) |
16 | 12, 15 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})) |
17 | | fvex 6817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐺‘𝑋) ∈ V |
18 | 17 | isseti 3452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
∃𝑧 𝑧 = (𝐺‘𝑋) |
19 | | eqcom 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧 = (𝐺‘𝑋) ↔ (𝐺‘𝑋) = 𝑧) |
20 | | fnbrfvb 6854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐺‘𝑋) = 𝑧 ↔ 𝑋𝐺𝑧)) |
21 | 19, 20 | bitrid 283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑧 = (𝐺‘𝑋) ↔ 𝑋𝐺𝑧)) |
22 | 21 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑧 = (𝐺‘𝑋) → 𝑋𝐺𝑧)) |
23 | | breq1 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐺‘𝑋) = 𝑧 → ((𝐺‘𝑋)𝐹𝑦 ↔ 𝑧𝐹𝑦)) |
24 | 23 | eqcoms 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = (𝐺‘𝑋) → ((𝐺‘𝑋)𝐹𝑦 ↔ 𝑧𝐹𝑦)) |
25 | 24 | biimpcd 249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐺‘𝑋)𝐹𝑦 → (𝑧 = (𝐺‘𝑋) → 𝑧𝐹𝑦)) |
26 | 22, 25 | anim12ii 619 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (𝑧 = (𝐺‘𝑋) → (𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
27 | 26 | eximdv 1918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (∃𝑧 𝑧 = (𝐺‘𝑋) → ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
28 | 18, 27 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
29 | | simpr 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) |
30 | | vex 3441 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑦 ∈ V |
31 | | brcog 5788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ V) → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
32 | 29, 30, 31 | sylancl 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
33 | 32 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
34 | 28, 33 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → 𝑋(𝐹 ∘ 𝐺)𝑦) |
35 | 30 | brresi 5912 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹 ∘ 𝐺)𝑦)) |
36 | | snidg 4599 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ {𝑋}) |
37 | 36 | biantrurd 534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑋 ∈ 𝐴 → (𝑋(𝐹 ∘ 𝐺)𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹 ∘ 𝐺)𝑦))) |
38 | 35, 37 | bitr4id 290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑋 ∈ 𝐴 → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) |
39 | 38 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) |
40 | 34, 39 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝐺‘𝑋)𝐹𝑦) → 𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦) |
41 | 40 | ex 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐺‘𝑋)𝐹𝑦 → 𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
42 | 41 | adantl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐺‘𝑋)𝐹𝑦 → 𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
43 | | breq1 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑋 = 𝑥 → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
44 | 43 | eqcoms 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝑋 → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
45 | 44 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑋((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 ↔ 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
46 | 42, 45 | sylibd 238 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐺‘𝑋)𝐹𝑦 → 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦)) |
47 | 46 | moimdv 2544 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)) |
48 | 47 | ex 414 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
49 | 48 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) ∧ 𝑥 = 𝑋) → (∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
50 | 16, 49 | rspcimdv 3556 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) → (∀𝑥 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
51 | 50 | ex 414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (∀𝑥 ∈ dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
52 | 51 | com13 88 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
dom ((𝐹 ∘ 𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹 ∘ 𝐺) ↾ {𝑋})𝑦 → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
53 | 10, 52 | simplbiim 506 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
((𝐹 ∘ 𝐺) ↾ {𝑋}) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (dom ((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
54 | 53 | com13 88 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
((𝐹 ∘ 𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (Fun ((𝐹 ∘ 𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦)))) |
55 | 9, 54 | mpcom 38 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (Fun ((𝐹 ∘ 𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦))) |
56 | 55 | imp31 419 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦(𝐺‘𝑋)𝐹𝑦) |
57 | 17 | snid 4601 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺‘𝑋) ∈ {(𝐺‘𝑋)} |
58 | 57 | biantrur 532 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑋)𝐹𝑦 ↔ ((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦)) |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐺‘𝑋)𝐹𝑦 ↔ ((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦))) |
60 | 59 | mobidv 2547 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (∃*𝑦(𝐺‘𝑋)𝐹𝑦 ↔ ∃*𝑦((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦))) |
61 | 56, 60 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦)) |
62 | 61 | adantl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → ∃*𝑦((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦)) |
63 | | breq1 5084 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐺‘𝑋) → (𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦 ↔ (𝐺‘𝑋)(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
64 | 30 | brresi 5912 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑋)(𝐹 ↾ {(𝐺‘𝑋)})𝑦 ↔ ((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦)) |
65 | 63, 64 | bitr2di 288 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐺‘𝑋) → (((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
66 | 65 | adantr 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → (((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
67 | 66 | mobidv 2547 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → (∃*𝑦((𝐺‘𝑋) ∈ {(𝐺‘𝑋)} ∧ (𝐺‘𝑋)𝐹𝑦) ↔ ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
68 | 62, 67 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (𝐺‘𝑋) ∧ ((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴))) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦) |
69 | 68 | ex 414 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑋) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
70 | 8, 69 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {(𝐺‘𝑋)} → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
71 | 7, 70 | syl6bi 253 |
. . . . . . . . 9
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
72 | 71 | com23 86 |
. . . . . . . 8
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
73 | 6, 72 | syl 17 |
. . . . . . 7
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
74 | 5, 73 | syl6com 37 |
. . . . . 6
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)))) |
75 | 74 | a1d 25 |
. . . . 5
⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → (Fun ((𝐹 ∘ 𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))))) |
76 | 75 | imp31 419 |
. . . 4
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦))) |
77 | 76 | pm2.43i 52 |
. . 3
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
78 | 77 | ralrimiv 3139 |
. 2
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦) |
79 | | dffun7 6490 |
. 2
⊢ (Fun
(𝐹 ↾ {(𝐺‘𝑋)}) ↔ (Rel (𝐹 ↾ {(𝐺‘𝑋)}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺‘𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺‘𝑋)})𝑦)) |
80 | 2, 78, 79 | sylanbrc 584 |
1
⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun (𝐹 ↾ {(𝐺‘𝑋)})) |