Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnfv Structured version   Visualization version   GIF version

Theorem funressnfv 45753
Description: A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
funressnfv (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))

Proof of Theorem funressnfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6011 . . 3 Rel (𝐹 ↾ {(𝐺𝑋)})
21a1i 11 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Rel (𝐹 ↾ {(𝐺𝑋)}))
3 dmfco 6988 . . . . . . . . 9 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
43biimpd 228 . . . . . . . 8 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
54funfni 6656 . . . . . . 7 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
6 dmressnsn 6024 . . . . . . . 8 ((𝐺𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)})
7 eleq2 2823 . . . . . . . . . 10 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) ↔ 𝑥 ∈ {(𝐺𝑋)}))
8 velsn 4645 . . . . . . . . . . 11 (𝑥 ∈ {(𝐺𝑋)} ↔ 𝑥 = (𝐺𝑋))
9 dmressnsn 6024 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ dom (𝐹𝐺) → dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋})
10 dffun7 6576 . . . . . . . . . . . . . . . . . . 19 (Fun ((𝐹𝐺) ↾ {𝑋}) ↔ (Rel ((𝐹𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
11 snidg 4663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ dom (𝐹𝐺) → 𝑋 ∈ {𝑋})
1211adantl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ {𝑋})
13 eleq2 2823 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝑋} = dom ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1413eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1514adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1612, 15mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋}))
17 fvex 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐺𝑋) ∈ V
1817isseti 3490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑧 𝑧 = (𝐺𝑋)
19 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 = (𝐺𝑋) ↔ (𝐺𝑋) = 𝑧)
20 fnbrfvb 6945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) = 𝑧𝑋𝐺𝑧))
2119, 20bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) ↔ 𝑋𝐺𝑧))
2221biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) → 𝑋𝐺𝑧))
23 breq1 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺𝑋) = 𝑧 → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2423eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝐺𝑋) → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2524biimpcd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑋)𝐹𝑦 → (𝑧 = (𝐺𝑋) → 𝑧𝐹𝑦))
2622, 25anim12ii 619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑧 = (𝐺𝑋) → (𝑋𝐺𝑧𝑧𝐹𝑦)))
2726eximdv 1921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (∃𝑧 𝑧 = (𝐺𝑋) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
2818, 27mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦))
29 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋𝐴)
30 vex 3479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ∈ V
31 brcog 5867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑋𝐴𝑦 ∈ V) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3229, 30, 31sylancl 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3332adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3428, 33mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋(𝐹𝐺)𝑦)
3530brresi 5991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋((𝐹𝐺) ↾ {𝑋})𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹𝐺)𝑦))
36 snidg 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑋𝐴𝑋 ∈ {𝑋})
3736biantrurd 534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋𝐴 → (𝑋(𝐹𝐺)𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹𝐺)𝑦)))
3835, 37bitr4id 290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑋𝐴 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
3938ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
4034, 39mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋((𝐹𝐺) ↾ {𝑋})𝑦)
4140ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
4241adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
43 breq1 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 = 𝑥 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4443eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑋 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4544ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4642, 45sylibd 238 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4746moimdv 2541 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦))
4847ex 414 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → ((𝐺 Fn 𝐴𝑋𝐴) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
4948com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5016, 49rspcimdv 3603 . . . . . . . . . . . . . . . . . . . . 21 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5150ex 414 . . . . . . . . . . . . . . . . . . . 20 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5251com13 88 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5310, 52simplbiim 506 . . . . . . . . . . . . . . . . . 18 (Fun ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5453com13 88 . . . . . . . . . . . . . . . . 17 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
559, 54mpcom 38 . . . . . . . . . . . . . . . 16 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5655imp31 419 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦(𝐺𝑋)𝐹𝑦)
5717snid 4665 . . . . . . . . . . . . . . . . . 18 (𝐺𝑋) ∈ {(𝐺𝑋)}
5857biantrur 532 . . . . . . . . . . . . . . . . 17 ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
5958a1i 11 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦)))
6059mobidv 2544 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦(𝐺𝑋)𝐹𝑦 ↔ ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦)))
6156, 60mpbid 231 . . . . . . . . . . . . . 14 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
6261adantl 483 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
63 breq1 5152 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐺𝑋) → (𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ (𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦))
6430brresi 5991 . . . . . . . . . . . . . . . 16 ((𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
6563, 64bitr2di 288 . . . . . . . . . . . . . . 15 (𝑥 = (𝐺𝑋) → (((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6665adantr 482 . . . . . . . . . . . . . 14 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6766mobidv 2544 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6862, 67mpbid 231 . . . . . . . . . . . 12 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
6968ex 414 . . . . . . . . . . 11 (𝑥 = (𝐺𝑋) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
708, 69sylbi 216 . . . . . . . . . 10 (𝑥 ∈ {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
717, 70syl6bi 253 . . . . . . . . 9 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
7271com23 86 . . . . . . . 8 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
736, 72syl 17 . . . . . . 7 ((𝐺𝑋) ∈ dom 𝐹 → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
745, 73syl6com 37 . . . . . 6 (𝑋 ∈ dom (𝐹𝐺) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))))
7574a1d 25 . . . . 5 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))))
7675imp31 419 . . . 4 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
7776pm2.43i 52 . . 3 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
7877ralrimiv 3146 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
79 dffun7 6576 . 2 (Fun (𝐹 ↾ {(𝐺𝑋)}) ↔ (Rel (𝐹 ↾ {(𝐺𝑋)}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
802, 78, 79sylanbrc 584 1 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  ∃*wmo 2533  wral 3062  Vcvv 3475  {csn 4629   class class class wbr 5149  dom cdm 5677  cres 5679  ccom 5681  Rel wrel 5682  Fun wfun 6538   Fn wfn 6539  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by:  afvco2  45884
  Copyright terms: Public domain W3C validator