Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnfv Structured version   Visualization version   GIF version

Theorem funressnfv 42816
 Description: A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
funressnfv (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))

Proof of Theorem funressnfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5770 . . 3 Rel (𝐹 ↾ {(𝐺𝑋)})
21a1i 11 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Rel (𝐹 ↾ {(𝐺𝑋)}))
3 dmfco 6631 . . . . . . . . 9 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) ↔ (𝐺𝑋) ∈ dom 𝐹))
43biimpd 230 . . . . . . . 8 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
54funfni 6334 . . . . . . 7 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹𝐺) → (𝐺𝑋) ∈ dom 𝐹))
6 dmressnsn 5782 . . . . . . . 8 ((𝐺𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)})
7 eleq2 2873 . . . . . . . . . 10 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) ↔ 𝑥 ∈ {(𝐺𝑋)}))
8 velsn 4494 . . . . . . . . . . 11 (𝑥 ∈ {(𝐺𝑋)} ↔ 𝑥 = (𝐺𝑋))
9 dmressnsn 5782 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ dom (𝐹𝐺) → dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋})
10 dffun7 6259 . . . . . . . . . . . . . . . . . . 19 (Fun ((𝐹𝐺) ↾ {𝑋}) ↔ (Rel ((𝐹𝐺) ↾ {𝑋}) ∧ ∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
11 snidg 4510 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ dom (𝐹𝐺) → 𝑋 ∈ {𝑋})
1211adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ {𝑋})
13 eleq2 2873 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝑋} = dom ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1413eqcoms 2805 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1514adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (𝑋 ∈ {𝑋} ↔ 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋})))
1612, 15mpbid 233 . . . . . . . . . . . . . . . . . . . . . 22 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → 𝑋 ∈ dom ((𝐹𝐺) ↾ {𝑋}))
17 fvex 6558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐺𝑋) ∈ V
1817isseti 3454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑧 𝑧 = (𝐺𝑋)
19 eqcom 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧 = (𝐺𝑋) ↔ (𝐺𝑋) = 𝑧)
20 fnbrfvb 6593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋) = 𝑧𝑋𝐺𝑧))
2119, 20syl5bb 284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) ↔ 𝑋𝐺𝑧))
2221biimpd 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑧 = (𝐺𝑋) → 𝑋𝐺𝑧))
23 breq1 4971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐺𝑋) = 𝑧 → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2423eqcoms 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝐺𝑋) → ((𝐺𝑋)𝐹𝑦𝑧𝐹𝑦))
2524biimpcd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑋)𝐹𝑦 → (𝑧 = (𝐺𝑋) → 𝑧𝐹𝑦))
2622, 25anim12ii 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑧 = (𝐺𝑋) → (𝑋𝐺𝑧𝑧𝐹𝑦)))
2726eximdv 1899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (∃𝑧 𝑧 = (𝐺𝑋) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
2818, 27mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦))
29 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 Fn 𝐴𝑋𝐴) → 𝑋𝐴)
30 vex 3443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ∈ V
31 brcog 5630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑋𝐴𝑦 ∈ V) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3229, 30, 31sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐺 Fn 𝐴𝑋𝐴) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3332adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑋𝐺𝑧𝑧𝐹𝑦)))
3428, 33mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋(𝐹𝐺)𝑦)
35 snidg 4510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑋𝐴𝑋 ∈ {𝑋})
3635biantrurd 533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋𝐴 → (𝑋(𝐹𝐺)𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹𝐺)𝑦)))
3730brresi 5750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋((𝐹𝐺) ↾ {𝑋})𝑦 ↔ (𝑋 ∈ {𝑋} ∧ 𝑋(𝐹𝐺)𝑦))
3836, 37syl6rbbr 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑋𝐴 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
3938ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑋(𝐹𝐺)𝑦))
4034, 39mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐺 Fn 𝐴𝑋𝐴) ∧ (𝐺𝑋)𝐹𝑦) → 𝑋((𝐹𝐺) ↾ {𝑋})𝑦)
4140ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
4241adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑋((𝐹𝐺) ↾ {𝑋})𝑦))
43 breq1 4971 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 = 𝑥 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4443eqcoms 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑋 → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4544ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑋((𝐹𝐺) ↾ {𝑋})𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4642, 45sylibd 240 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦𝑥((𝐹𝐺) ↾ {𝑋})𝑦))
4746moimdv 2585 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦))
4847ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → ((𝐺 Fn 𝐴𝑋𝐴) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
4948com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) ∧ 𝑥 = 𝑋) → (∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5016, 49rspcimdv 3562 . . . . . . . . . . . . . . . . . . . . 21 ((dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} ∧ 𝑋 ∈ dom (𝐹𝐺)) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5150ex 413 . . . . . . . . . . . . . . . . . . . 20 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5251com13 88 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ dom ((𝐹𝐺) ↾ {𝑋})∃*𝑦 𝑥((𝐹𝐺) ↾ {𝑋})𝑦 → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5310, 52simplbiim 505 . . . . . . . . . . . . . . . . . 18 (Fun ((𝐹𝐺) ↾ {𝑋}) → (𝑋 ∈ dom (𝐹𝐺) → (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
5453com13 88 . . . . . . . . . . . . . . . . 17 (dom ((𝐹𝐺) ↾ {𝑋}) = {𝑋} → (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦))))
559, 54mpcom 38 . . . . . . . . . . . . . . . 16 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → ∃*𝑦(𝐺𝑋)𝐹𝑦)))
5655imp31 418 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦(𝐺𝑋)𝐹𝑦)
5717snid 4512 . . . . . . . . . . . . . . . . . 18 (𝐺𝑋) ∈ {(𝐺𝑋)}
5857biantrur 531 . . . . . . . . . . . . . . . . 17 ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
5958a1i 11 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐺𝑋)𝐹𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦)))
6059mobidv 2590 . . . . . . . . . . . . . . 15 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (∃*𝑦(𝐺𝑋)𝐹𝑦 ↔ ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦)))
6156, 60mpbid 233 . . . . . . . . . . . . . 14 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
6261adantl 482 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
63 breq1 4971 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐺𝑋) → (𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ (𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦))
6430brresi 5750 . . . . . . . . . . . . . . . 16 ((𝐺𝑋)(𝐹 ↾ {(𝐺𝑋)})𝑦 ↔ ((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦))
6563, 64syl6rbb 289 . . . . . . . . . . . . . . 15 (𝑥 = (𝐺𝑋) → (((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6665adantr 481 . . . . . . . . . . . . . 14 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6766mobidv 2590 . . . . . . . . . . . . 13 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → (∃*𝑦((𝐺𝑋) ∈ {(𝐺𝑋)} ∧ (𝐺𝑋)𝐹𝑦) ↔ ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
6862, 67mpbid 233 . . . . . . . . . . . 12 ((𝑥 = (𝐺𝑋) ∧ ((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴))) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
6968ex 413 . . . . . . . . . . 11 (𝑥 = (𝐺𝑋) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
708, 69sylbi 218 . . . . . . . . . 10 (𝑥 ∈ {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
717, 70syl6bi 254 . . . . . . . . 9 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
7271com23 86 . . . . . . . 8 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
736, 72syl 17 . . . . . . 7 ((𝐺𝑋) ∈ dom 𝐹 → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
745, 73syl6com 37 . . . . . 6 (𝑋 ∈ dom (𝐹𝐺) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))))
7574a1d 25 . . . . 5 (𝑋 ∈ dom (𝐹𝐺) → (Fun ((𝐹𝐺) ↾ {𝑋}) → ((𝐺 Fn 𝐴𝑋𝐴) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))))
7675imp31 418 . . . 4 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)))
7776pm2.43i 52 . . 3 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)}) → ∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
7877ralrimiv 3150 . 2 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦)
79 dffun7 6259 . 2 (Fun (𝐹 ↾ {(𝐺𝑋)}) ↔ (Rel (𝐹 ↾ {(𝐺𝑋)}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {(𝐺𝑋)})∃*𝑦 𝑥(𝐹 ↾ {(𝐺𝑋)})𝑦))
802, 78, 79sylanbrc 583 1 (((𝑋 ∈ dom (𝐹𝐺) ∧ Fun ((𝐹𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ↾ {(𝐺𝑋)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1525  ∃wex 1765   ∈ wcel 2083  ∃*wmo 2576  ∀wral 3107  Vcvv 3440  {csn 4478   class class class wbr 4968  dom cdm 5450   ↾ cres 5452   ∘ ccom 5454  Rel wrel 5455  Fun wfun 6226   Fn wfn 6227  ‘cfv 6232 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-res 5462  df-iota 6196  df-fun 6234  df-fn 6235  df-fv 6240 This theorem is referenced by:  afvco2  42913
 Copyright terms: Public domain W3C validator