MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom6disj Structured version   Visualization version   GIF version

Theorem brdom6disj 10297
Description: An equivalence to a dominance relation for disjoint sets. (Contributed by NM, 5-Apr-2007.)
Hypotheses
Ref Expression
brdom7disj.1 𝐴 ∈ V
brdom7disj.2 𝐵 ∈ V
brdom7disj.3 (𝐴𝐵) = ∅
Assertion
Ref Expression
brdom6disj (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom6disj
Dummy variables 𝑔 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom7disj.2 . . 3 𝐵 ∈ V
21brdom5 10294 . 2 (𝐴𝐵 ↔ ∃𝑔(∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥))
3 zfpair2 5354 . . . . . . . . 9 {𝑥, 𝑦} ∈ V
4 eqeq1 2743 . . . . . . . . . . . 12 (𝑣 = {𝑥, 𝑦} → (𝑣 = {𝑧, 𝑤} ↔ {𝑥, 𝑦} = {𝑧, 𝑤}))
54anbi1d 630 . . . . . . . . . . 11 (𝑣 = {𝑥, 𝑦} → ((𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)))
6 df-br 5076 . . . . . . . . . . . 12 (𝑧𝑔𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝑔)
76anbi2i 623 . . . . . . . . . . 11 (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) ↔ ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔))
85, 7bitr4di 289 . . . . . . . . . 10 (𝑣 = {𝑥, 𝑦} → ((𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤)))
982rexbidv 3230 . . . . . . . . 9 (𝑣 = {𝑥, 𝑦} → (∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ∃𝑤𝐴𝑧𝐵 ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤)))
103, 9elab 3610 . . . . . . . 8 ({𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ↔ ∃𝑤𝐴𝑧𝐵 ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤))
11 incom 4136 . . . . . . . . . . . . . . . 16 (𝐵𝐴) = (𝐴𝐵)
12 brdom7disj.3 . . . . . . . . . . . . . . . 16 (𝐴𝐵) = ∅
1311, 12eqtri 2767 . . . . . . . . . . . . . . 15 (𝐵𝐴) = ∅
14 disjne 4389 . . . . . . . . . . . . . . 15 (((𝐵𝐴) = ∅ ∧ 𝑥𝐵𝑤𝐴) → 𝑥𝑤)
1513, 14mp3an1 1447 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑤𝐴) → 𝑥𝑤)
16 vex 3437 . . . . . . . . . . . . . . 15 𝑥 ∈ V
17 vex 3437 . . . . . . . . . . . . . . 15 𝑦 ∈ V
18 vex 3437 . . . . . . . . . . . . . . 15 𝑧 ∈ V
19 vex 3437 . . . . . . . . . . . . . . 15 𝑤 ∈ V
2016, 17, 18, 19opthpr 4783 . . . . . . . . . . . . . 14 (𝑥𝑤 → ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
2115, 20syl 17 . . . . . . . . . . . . 13 ((𝑥𝐵𝑤𝐴) → ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
22 breq12 5080 . . . . . . . . . . . . . 14 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝑔𝑦𝑧𝑔𝑤))
2322biimprd 247 . . . . . . . . . . . . 13 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑧𝑔𝑤𝑥𝑔𝑦))
2421, 23syl6bi 252 . . . . . . . . . . . 12 ((𝑥𝐵𝑤𝐴) → ({𝑥, 𝑦} = {𝑧, 𝑤} → (𝑧𝑔𝑤𝑥𝑔𝑦)))
2524impd 411 . . . . . . . . . . 11 ((𝑥𝐵𝑤𝐴) → (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦))
2625ex 413 . . . . . . . . . 10 (𝑥𝐵 → (𝑤𝐴 → (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦)))
2726adantrd 492 . . . . . . . . 9 (𝑥𝐵 → ((𝑤𝐴𝑧𝐵) → (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦)))
2827rexlimdvv 3223 . . . . . . . 8 (𝑥𝐵 → (∃𝑤𝐴𝑧𝐵 ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦))
2910, 28syl5bi 241 . . . . . . 7 (𝑥𝐵 → ({𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → 𝑥𝑔𝑦))
3029moimdv 2547 . . . . . 6 (𝑥𝐵 → (∃*𝑦 𝑥𝑔𝑦 → ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}))
3130ralimia 3086 . . . . 5 (∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 → ∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)})
32 zfpair2 5354 . . . . . . . . . . . 12 {𝑦, 𝑥} ∈ V
33 eqeq1 2743 . . . . . . . . . . . . . 14 (𝑣 = {𝑦, 𝑥} → (𝑣 = {𝑧, 𝑤} ↔ {𝑦, 𝑥} = {𝑧, 𝑤}))
3433anbi1d 630 . . . . . . . . . . . . 13 (𝑣 = {𝑦, 𝑥} → ((𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)))
35342rexbidv 3230 . . . . . . . . . . . 12 (𝑣 = {𝑦, 𝑥} → (∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ∃𝑤𝐴𝑧𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)))
3632, 35elab 3610 . . . . . . . . . . 11 ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ↔ ∃𝑤𝐴𝑧𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔))
37 disjne 4389 . . . . . . . . . . . . . . . . . 18 (((𝐵𝐴) = ∅ ∧ 𝑧𝐵𝑥𝐴) → 𝑧𝑥)
3813, 37mp3an1 1447 . . . . . . . . . . . . . . . . 17 ((𝑧𝐵𝑥𝐴) → 𝑧𝑥)
3938ancoms 459 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑧𝐵) → 𝑧𝑥)
4018, 19, 17, 16opthpr 4783 . . . . . . . . . . . . . . . 16 (𝑧𝑥 → ({𝑧, 𝑤} = {𝑦, 𝑥} ↔ (𝑧 = 𝑦𝑤 = 𝑥)))
4139, 40syl 17 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑧𝐵) → ({𝑧, 𝑤} = {𝑦, 𝑥} ↔ (𝑧 = 𝑦𝑤 = 𝑥)))
42 eqcom 2746 . . . . . . . . . . . . . . 15 ({𝑦, 𝑥} = {𝑧, 𝑤} ↔ {𝑧, 𝑤} = {𝑦, 𝑥})
43 ancom 461 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑥𝑧 = 𝑦) ↔ (𝑧 = 𝑦𝑤 = 𝑥))
4441, 42, 433bitr4g 314 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑧𝐵) → ({𝑦, 𝑥} = {𝑧, 𝑤} ↔ (𝑤 = 𝑥𝑧 = 𝑦)))
456bicomi 223 . . . . . . . . . . . . . . 15 (⟨𝑧, 𝑤⟩ ∈ 𝑔𝑧𝑔𝑤)
4645a1i 11 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑧𝐵) → (⟨𝑧, 𝑤⟩ ∈ 𝑔𝑧𝑔𝑤))
4744, 46anbi12d 631 . . . . . . . . . . . . 13 ((𝑥𝐴𝑧𝐵) → (({𝑦, 𝑥} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ((𝑤 = 𝑥𝑧 = 𝑦) ∧ 𝑧𝑔𝑤)))
4847rexbidva 3226 . . . . . . . . . . . 12 (𝑥𝐴 → (∃𝑧𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ∃𝑧𝐵 ((𝑤 = 𝑥𝑧 = 𝑦) ∧ 𝑧𝑔𝑤)))
4948rexbidv 3227 . . . . . . . . . . 11 (𝑥𝐴 → (∃𝑤𝐴𝑧𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) ↔ ∃𝑤𝐴𝑧𝐵 ((𝑤 = 𝑥𝑧 = 𝑦) ∧ 𝑧𝑔𝑤)))
5036, 49bitrid 282 . . . . . . . . . 10 (𝑥𝐴 → ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ↔ ∃𝑤𝐴𝑧𝐵 ((𝑤 = 𝑥𝑧 = 𝑦) ∧ 𝑧𝑔𝑤)))
5150adantr 481 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ↔ ∃𝑤𝐴𝑧𝐵 ((𝑤 = 𝑥𝑧 = 𝑦) ∧ 𝑧𝑔𝑤)))
52 breq2 5079 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑧𝑔𝑤𝑧𝑔𝑥))
53 breq1 5078 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧𝑔𝑥𝑦𝑔𝑥))
5452, 53ceqsrex2v 3588 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → (∃𝑤𝐴𝑧𝐵 ((𝑤 = 𝑥𝑧 = 𝑦) ∧ 𝑧𝑔𝑤) ↔ 𝑦𝑔𝑥))
5551, 54bitrd 278 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ↔ 𝑦𝑔𝑥))
5655rexbidva 3226 . . . . . . 7 (𝑥𝐴 → (∃𝑦𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ↔ ∃𝑦𝐵 𝑦𝑔𝑥))
5756ralbiia 3092 . . . . . 6 (∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥)
5857biimpri 227 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥 → ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)})
59 brdom7disj.1 . . . . . . 7 𝐴 ∈ V
60 snex 5355 . . . . . . . 8 {{𝑧, 𝑤}} ∈ V
61 simpl 483 . . . . . . . . . 10 ((𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔) → 𝑣 = {𝑧, 𝑤})
6261ss2abi 4001 . . . . . . . . 9 {𝑣 ∣ (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ⊆ {𝑣𝑣 = {𝑧, 𝑤}}
63 df-sn 4563 . . . . . . . . 9 {{𝑧, 𝑤}} = {𝑣𝑣 = {𝑧, 𝑤}}
6462, 63sseqtrri 3959 . . . . . . . 8 {𝑣 ∣ (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ⊆ {{𝑧, 𝑤}}
6560, 64ssexi 5247 . . . . . . 7 {𝑣 ∣ (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ∈ V
6659, 1, 65ab2rexex2 7832 . . . . . 6 {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ∈ V
67 eleq2 2828 . . . . . . . . 9 (𝑓 = {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → ({𝑥, 𝑦} ∈ 𝑓 ↔ {𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}))
6867mobidv 2550 . . . . . . . 8 (𝑓 = {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → (∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ↔ ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}))
6968ralbidv 3113 . . . . . . 7 (𝑓 = {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → (∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ↔ ∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}))
70 eleq2 2828 . . . . . . . . 9 (𝑓 = {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → ({𝑦, 𝑥} ∈ 𝑓 ↔ {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}))
7170rexbidv 3227 . . . . . . . 8 (𝑓 = {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → (∃𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓 ↔ ∃𝑦𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}))
7271ralbidv 3113 . . . . . . 7 (𝑓 = {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → (∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓 ↔ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}))
7369, 72anbi12d 631 . . . . . 6 (𝑓 = {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} → ((∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓) ↔ (∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)})))
7466, 73spcev 3546 . . . . 5 ((∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)} ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤𝐴𝑧𝐵 (𝑣 = {𝑧, 𝑤} ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑔)}) → ∃𝑓(∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓))
7531, 58, 74syl2an 596 . . . 4 ((∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓))
7675exlimiv 1934 . . 3 (∃𝑔(∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥) → ∃𝑓(∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓))
77 preq1 4670 . . . . . . . . 9 (𝑤 = 𝑥 → {𝑤, 𝑧} = {𝑥, 𝑧})
7877eleq1d 2824 . . . . . . . 8 (𝑤 = 𝑥 → ({𝑤, 𝑧} ∈ 𝑓 ↔ {𝑥, 𝑧} ∈ 𝑓))
79 preq2 4671 . . . . . . . . 9 (𝑧 = 𝑦 → {𝑥, 𝑧} = {𝑥, 𝑦})
8079eleq1d 2824 . . . . . . . 8 (𝑧 = 𝑦 → ({𝑥, 𝑧} ∈ 𝑓 ↔ {𝑥, 𝑦} ∈ 𝑓))
81 eqid 2739 . . . . . . . 8 {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}
8216, 17, 78, 80, 81brab 5457 . . . . . . 7 (𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ↔ {𝑥, 𝑦} ∈ 𝑓)
8382mobii 2549 . . . . . 6 (∃*𝑦 𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ↔ ∃*𝑦{𝑥, 𝑦} ∈ 𝑓)
8483ralbii 3093 . . . . 5 (∀𝑥𝐵 ∃*𝑦 𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ↔ ∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓)
85 preq1 4670 . . . . . . . . 9 (𝑤 = 𝑦 → {𝑤, 𝑧} = {𝑦, 𝑧})
8685eleq1d 2824 . . . . . . . 8 (𝑤 = 𝑦 → ({𝑤, 𝑧} ∈ 𝑓 ↔ {𝑦, 𝑧} ∈ 𝑓))
87 preq2 4671 . . . . . . . . 9 (𝑧 = 𝑥 → {𝑦, 𝑧} = {𝑦, 𝑥})
8887eleq1d 2824 . . . . . . . 8 (𝑧 = 𝑥 → ({𝑦, 𝑧} ∈ 𝑓 ↔ {𝑦, 𝑥} ∈ 𝑓))
8917, 16, 86, 88, 81brab 5457 . . . . . . 7 (𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥 ↔ {𝑦, 𝑥} ∈ 𝑓)
9089rexbii 3182 . . . . . 6 (∃𝑦𝐵 𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥 ↔ ∃𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓)
9190ralbii 3093 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥 ↔ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓)
92 df-opab 5138 . . . . . . 7 {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓)}
93 vuniex 7601 . . . . . . . 8 𝑓 ∈ V
9419prid1 4699 . . . . . . . . . . 11 𝑤 ∈ {𝑤, 𝑧}
95 elunii 4845 . . . . . . . . . . 11 ((𝑤 ∈ {𝑤, 𝑧} ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑤 𝑓)
9694, 95mpan 687 . . . . . . . . . 10 ({𝑤, 𝑧} ∈ 𝑓𝑤 𝑓)
9796adantl 482 . . . . . . . . 9 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑤 𝑓)
9897exlimiv 1934 . . . . . . . 8 (∃𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑤 𝑓)
9918prid2 4700 . . . . . . . . . . 11 𝑧 ∈ {𝑤, 𝑧}
100 elunii 4845 . . . . . . . . . . 11 ((𝑧 ∈ {𝑤, 𝑧} ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑧 𝑓)
10199, 100mpan 687 . . . . . . . . . 10 ({𝑤, 𝑧} ∈ 𝑓𝑧 𝑓)
102101adantl 482 . . . . . . . . 9 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑧 𝑓)
103 df-sn 4563 . . . . . . . . . . 11 {⟨𝑤, 𝑧⟩} = {𝑣𝑣 = ⟨𝑤, 𝑧⟩}
104 snex 5355 . . . . . . . . . . 11 {⟨𝑤, 𝑧⟩} ∈ V
105103, 104eqeltrri 2837 . . . . . . . . . 10 {𝑣𝑣 = ⟨𝑤, 𝑧⟩} ∈ V
106 simpl 483 . . . . . . . . . . 11 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑣 = ⟨𝑤, 𝑧⟩)
107106ss2abi 4001 . . . . . . . . . 10 {𝑣 ∣ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓)} ⊆ {𝑣𝑣 = ⟨𝑤, 𝑧⟩}
108105, 107ssexi 5247 . . . . . . . . 9 {𝑣 ∣ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓)} ∈ V
10993, 102, 108abexex 7823 . . . . . . . 8 {𝑣 ∣ ∃𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓)} ∈ V
11093, 98, 109abexex 7823 . . . . . . 7 {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ {𝑤, 𝑧} ∈ 𝑓)} ∈ V
11192, 110eqeltri 2836 . . . . . 6 {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} ∈ V
112 breq 5077 . . . . . . . . 9 (𝑔 = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} → (𝑥𝑔𝑦𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦))
113112mobidv 2550 . . . . . . . 8 (𝑔 = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} → (∃*𝑦 𝑥𝑔𝑦 ↔ ∃*𝑦 𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦))
114113ralbidv 3113 . . . . . . 7 (𝑔 = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} → (∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ↔ ∀𝑥𝐵 ∃*𝑦 𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦))
115 breq 5077 . . . . . . . . 9 (𝑔 = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} → (𝑦𝑔𝑥𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥))
116115rexbidv 3227 . . . . . . . 8 (𝑔 = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} → (∃𝑦𝐵 𝑦𝑔𝑥 ↔ ∃𝑦𝐵 𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥))
117116ralbidv 3113 . . . . . . 7 (𝑔 = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} → (∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥))
118114, 117anbi12d 631 . . . . . 6 (𝑔 = {⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓} → ((∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥) ↔ (∀𝑥𝐵 ∃*𝑦 𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥)))
119111, 118spcev 3546 . . . . 5 ((∀𝑥𝐵 ∃*𝑦 𝑥{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦{⟨𝑤, 𝑧⟩ ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥) → ∃𝑔(∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥))
12084, 91, 119syl2anbr 599 . . . 4 ((∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓) → ∃𝑔(∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥))
121120exlimiv 1934 . . 3 (∃𝑓(∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓) → ∃𝑔(∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥))
12276, 121impbii 208 . 2 (∃𝑔(∀𝑥𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑔𝑥) ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓))
1232, 122bitri 274 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 {𝑦, 𝑥} ∈ 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2107  ∃*wmo 2539  {cab 2716  wne 2944  wral 3065  wrex 3066  Vcvv 3433  cin 3887  c0 4257  {csn 4562  {cpr 4564  cop 4568   cuni 4840   class class class wbr 5075  {copab 5137  cdom 8740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-ac2 10228
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-card 9706  df-acn 9709  df-ac 9881
This theorem is referenced by:  grothprim  10599
  Copyright terms: Public domain W3C validator