Step | Hyp | Ref
| Expression |
1 | | brdom7disj.2 |
. . 3
⊢ 𝐵 ∈ V |
2 | 1 | brdom5 9989 |
. 2
⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑔(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥)) |
3 | | zfpair2 5299 |
. . . . . . . . 9
⊢ {𝑥, 𝑦} ∈ V |
4 | | eqeq1 2762 |
. . . . . . . . . . . 12
⊢ (𝑣 = {𝑥, 𝑦} → (𝑣 = {𝑧, 𝑤} ↔ {𝑥, 𝑦} = {𝑧, 𝑤})) |
5 | 4 | anbi1d 632 |
. . . . . . . . . . 11
⊢ (𝑣 = {𝑥, 𝑦} → ((𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔))) |
6 | | df-br 5033 |
. . . . . . . . . . . 12
⊢ (𝑧𝑔𝑤 ↔ 〈𝑧, 𝑤〉 ∈ 𝑔) |
7 | 6 | anbi2i 625 |
. . . . . . . . . . 11
⊢ (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) ↔ ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)) |
8 | 5, 7 | bitr4di 292 |
. . . . . . . . . 10
⊢ (𝑣 = {𝑥, 𝑦} → ((𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤))) |
9 | 8 | 2rexbidv 3224 |
. . . . . . . . 9
⊢ (𝑣 = {𝑥, 𝑦} → (∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤))) |
10 | 3, 9 | elab 3588 |
. . . . . . . 8
⊢ ({𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ↔ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤)) |
11 | | incom 4106 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) |
12 | | brdom7disj.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∩ 𝐵) = ∅ |
13 | 11, 12 | eqtri 2781 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∩ 𝐴) = ∅ |
14 | | disjne 4351 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ∩ 𝐴) = ∅ ∧ 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴) → 𝑥 ≠ 𝑤) |
15 | 13, 14 | mp3an1 1445 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴) → 𝑥 ≠ 𝑤) |
16 | | vex 3413 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
17 | | vex 3413 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
18 | | vex 3413 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
19 | | vex 3413 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
20 | 16, 17, 18, 19 | opthpr 4739 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≠ 𝑤 → ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
21 | 15, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴) → ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
22 | | breq12 5037 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥𝑔𝑦 ↔ 𝑧𝑔𝑤)) |
23 | 22 | biimprd 251 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑧𝑔𝑤 → 𝑥𝑔𝑦)) |
24 | 21, 23 | syl6bi 256 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴) → ({𝑥, 𝑦} = {𝑧, 𝑤} → (𝑧𝑔𝑤 → 𝑥𝑔𝑦))) |
25 | 24 | impd 414 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐴) → (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦)) |
26 | 25 | ex 416 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 → (𝑤 ∈ 𝐴 → (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦))) |
27 | 26 | adantrd 495 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦))) |
28 | 27 | rexlimdvv 3217 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵 → (∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ({𝑥, 𝑦} = {𝑧, 𝑤} ∧ 𝑧𝑔𝑤) → 𝑥𝑔𝑦)) |
29 | 10, 28 | syl5bi 245 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → ({𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → 𝑥𝑔𝑦)) |
30 | 29 | moimdv 2563 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → (∃*𝑦 𝑥𝑔𝑦 → ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)})) |
31 | 30 | ralimia 3090 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑔𝑦 → ∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)}) |
32 | | zfpair2 5299 |
. . . . . . . . . . . 12
⊢ {𝑦, 𝑥} ∈ V |
33 | | eqeq1 2762 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = {𝑦, 𝑥} → (𝑣 = {𝑧, 𝑤} ↔ {𝑦, 𝑥} = {𝑧, 𝑤})) |
34 | 33 | anbi1d 632 |
. . . . . . . . . . . . 13
⊢ (𝑣 = {𝑦, 𝑥} → ((𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔))) |
35 | 34 | 2rexbidv 3224 |
. . . . . . . . . . . 12
⊢ (𝑣 = {𝑦, 𝑥} → (∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔))) |
36 | 32, 35 | elab 3588 |
. . . . . . . . . . 11
⊢ ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ↔ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)) |
37 | | disjne 4351 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∩ 𝐴) = ∅ ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑧 ≠ 𝑥) |
38 | 13, 37 | mp3an1 1445 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑧 ≠ 𝑥) |
39 | 38 | ancoms 462 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝑧 ≠ 𝑥) |
40 | 18, 19, 17, 16 | opthpr 4739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ≠ 𝑥 → ({𝑧, 𝑤} = {𝑦, 𝑥} ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥))) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ({𝑧, 𝑤} = {𝑦, 𝑥} ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥))) |
42 | | eqcom 2765 |
. . . . . . . . . . . . . . 15
⊢ ({𝑦, 𝑥} = {𝑧, 𝑤} ↔ {𝑧, 𝑤} = {𝑦, 𝑥}) |
43 | | ancom 464 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ↔ (𝑧 = 𝑦 ∧ 𝑤 = 𝑥)) |
44 | 41, 42, 43 | 3bitr4g 317 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ({𝑦, 𝑥} = {𝑧, 𝑤} ↔ (𝑤 = 𝑥 ∧ 𝑧 = 𝑦))) |
45 | 6 | bicomi 227 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑧, 𝑤〉 ∈ 𝑔 ↔ 𝑧𝑔𝑤) |
46 | 45 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (〈𝑧, 𝑤〉 ∈ 𝑔 ↔ 𝑧𝑔𝑤)) |
47 | 44, 46 | anbi12d 633 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (({𝑦, 𝑥} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ∧ 𝑧𝑔𝑤))) |
48 | 47 | rexbidva 3220 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → (∃𝑧 ∈ 𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ∃𝑧 ∈ 𝐵 ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ∧ 𝑧𝑔𝑤))) |
49 | 48 | rexbidv 3221 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ({𝑦, 𝑥} = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) ↔ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ∧ 𝑧𝑔𝑤))) |
50 | 36, 49 | syl5bb 286 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ↔ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ∧ 𝑧𝑔𝑤))) |
51 | 50 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ↔ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ∧ 𝑧𝑔𝑤))) |
52 | | breq2 5036 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝑧𝑔𝑤 ↔ 𝑧𝑔𝑥)) |
53 | | breq1 5035 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝑧𝑔𝑥 ↔ 𝑦𝑔𝑥)) |
54 | 52, 53 | ceqsrex2v 3569 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ((𝑤 = 𝑥 ∧ 𝑧 = 𝑦) ∧ 𝑧𝑔𝑤) ↔ 𝑦𝑔𝑥)) |
55 | 51, 54 | bitrd 282 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ({𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ↔ 𝑦𝑔𝑥)) |
56 | 55 | rexbidva 3220 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ↔ ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥)) |
57 | 56 | ralbiia 3096 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥) |
58 | 57 | biimpri 231 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)}) |
59 | | brdom7disj.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
60 | | snex 5300 |
. . . . . . . 8
⊢ {{𝑧, 𝑤}} ∈ V |
61 | | simpl 486 |
. . . . . . . . . 10
⊢ ((𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔) → 𝑣 = {𝑧, 𝑤}) |
62 | 61 | ss2abi 3971 |
. . . . . . . . 9
⊢ {𝑣 ∣ (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ⊆ {𝑣 ∣ 𝑣 = {𝑧, 𝑤}} |
63 | | df-sn 4523 |
. . . . . . . . 9
⊢ {{𝑧, 𝑤}} = {𝑣 ∣ 𝑣 = {𝑧, 𝑤}} |
64 | 62, 63 | sseqtrri 3929 |
. . . . . . . 8
⊢ {𝑣 ∣ (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ⊆ {{𝑧, 𝑤}} |
65 | 60, 64 | ssexi 5192 |
. . . . . . 7
⊢ {𝑣 ∣ (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ∈ V |
66 | 59, 1, 65 | ab2rexex2 7685 |
. . . . . 6
⊢ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ∈ V |
67 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑓 = {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → ({𝑥, 𝑦} ∈ 𝑓 ↔ {𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)})) |
68 | 67 | mobidv 2567 |
. . . . . . . 8
⊢ (𝑓 = {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → (∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ↔ ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)})) |
69 | 68 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑓 = {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → (∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ↔ ∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)})) |
70 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑓 = {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → ({𝑦, 𝑥} ∈ 𝑓 ↔ {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)})) |
71 | 70 | rexbidv 3221 |
. . . . . . . 8
⊢ (𝑓 = {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → (∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓 ↔ ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)})) |
72 | 71 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑓 = {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)})) |
73 | 69, 72 | anbi12d 633 |
. . . . . 6
⊢ (𝑓 = {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} → ((∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓) ↔ (∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)}))) |
74 | 66, 73 | spcev 3525 |
. . . . 5
⊢
((∀𝑥 ∈
𝐵 ∃*𝑦{𝑥, 𝑦} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)} ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ {𝑣 ∣ ∃𝑤 ∈ 𝐴 ∃𝑧 ∈ 𝐵 (𝑣 = {𝑧, 𝑤} ∧ 〈𝑧, 𝑤〉 ∈ 𝑔)}) → ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) |
75 | 31, 58, 74 | syl2an 598 |
. . . 4
⊢
((∀𝑥 ∈
𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥) → ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) |
76 | 75 | exlimiv 1931 |
. . 3
⊢
(∃𝑔(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥) → ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) |
77 | | preq1 4626 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → {𝑤, 𝑧} = {𝑥, 𝑧}) |
78 | 77 | eleq1d 2836 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ({𝑤, 𝑧} ∈ 𝑓 ↔ {𝑥, 𝑧} ∈ 𝑓)) |
79 | | preq2 4627 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → {𝑥, 𝑧} = {𝑥, 𝑦}) |
80 | 79 | eleq1d 2836 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ({𝑥, 𝑧} ∈ 𝑓 ↔ {𝑥, 𝑦} ∈ 𝑓)) |
81 | | eqid 2758 |
. . . . . . . 8
⊢
{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} |
82 | 16, 17, 78, 80, 81 | brab 5400 |
. . . . . . 7
⊢ (𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ↔ {𝑥, 𝑦} ∈ 𝑓) |
83 | 82 | mobii 2565 |
. . . . . 6
⊢
(∃*𝑦 𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ↔ ∃*𝑦{𝑥, 𝑦} ∈ 𝑓) |
84 | 83 | ralbii 3097 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∃*𝑦 𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ↔ ∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓) |
85 | | preq1 4626 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → {𝑤, 𝑧} = {𝑦, 𝑧}) |
86 | 85 | eleq1d 2836 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ({𝑤, 𝑧} ∈ 𝑓 ↔ {𝑦, 𝑧} ∈ 𝑓)) |
87 | | preq2 4627 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → {𝑦, 𝑧} = {𝑦, 𝑥}) |
88 | 87 | eleq1d 2836 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ({𝑦, 𝑧} ∈ 𝑓 ↔ {𝑦, 𝑥} ∈ 𝑓)) |
89 | 17, 16, 86, 88, 81 | brab 5400 |
. . . . . . 7
⊢ (𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥 ↔ {𝑦, 𝑥} ∈ 𝑓) |
90 | 89 | rexbii 3175 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥 ↔ ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓) |
91 | 90 | ralbii 3097 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓) |
92 | | df-opab 5095 |
. . . . . . 7
⊢
{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} = {𝑣 ∣ ∃𝑤∃𝑧(𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓)} |
93 | | vuniex 7463 |
. . . . . . . 8
⊢ ∪ 𝑓
∈ V |
94 | 19 | prid1 4655 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ {𝑤, 𝑧} |
95 | | elunii 4803 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ {𝑤, 𝑧} ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑤 ∈ ∪ 𝑓) |
96 | 94, 95 | mpan 689 |
. . . . . . . . . 10
⊢ ({𝑤, 𝑧} ∈ 𝑓 → 𝑤 ∈ ∪ 𝑓) |
97 | 96 | adantl 485 |
. . . . . . . . 9
⊢ ((𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑤 ∈ ∪ 𝑓) |
98 | 97 | exlimiv 1931 |
. . . . . . . 8
⊢
(∃𝑧(𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑤 ∈ ∪ 𝑓) |
99 | 18 | prid2 4656 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ {𝑤, 𝑧} |
100 | | elunii 4803 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ {𝑤, 𝑧} ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑧 ∈ ∪ 𝑓) |
101 | 99, 100 | mpan 689 |
. . . . . . . . . 10
⊢ ({𝑤, 𝑧} ∈ 𝑓 → 𝑧 ∈ ∪ 𝑓) |
102 | 101 | adantl 485 |
. . . . . . . . 9
⊢ ((𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑧 ∈ ∪ 𝑓) |
103 | | df-sn 4523 |
. . . . . . . . . . 11
⊢
{〈𝑤, 𝑧〉} = {𝑣 ∣ 𝑣 = 〈𝑤, 𝑧〉} |
104 | | snex 5300 |
. . . . . . . . . . 11
⊢
{〈𝑤, 𝑧〉} ∈
V |
105 | 103, 104 | eqeltrri 2849 |
. . . . . . . . . 10
⊢ {𝑣 ∣ 𝑣 = 〈𝑤, 𝑧〉} ∈ V |
106 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓) → 𝑣 = 〈𝑤, 𝑧〉) |
107 | 106 | ss2abi 3971 |
. . . . . . . . . 10
⊢ {𝑣 ∣ (𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓)} ⊆ {𝑣 ∣ 𝑣 = 〈𝑤, 𝑧〉} |
108 | 105, 107 | ssexi 5192 |
. . . . . . . . 9
⊢ {𝑣 ∣ (𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓)} ∈ V |
109 | 93, 102, 108 | abexex 7676 |
. . . . . . . 8
⊢ {𝑣 ∣ ∃𝑧(𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓)} ∈ V |
110 | 93, 98, 109 | abexex 7676 |
. . . . . . 7
⊢ {𝑣 ∣ ∃𝑤∃𝑧(𝑣 = 〈𝑤, 𝑧〉 ∧ {𝑤, 𝑧} ∈ 𝑓)} ∈ V |
111 | 92, 110 | eqeltri 2848 |
. . . . . 6
⊢
{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} ∈ V |
112 | | breq 5034 |
. . . . . . . . 9
⊢ (𝑔 = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} → (𝑥𝑔𝑦 ↔ 𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦)) |
113 | 112 | mobidv 2567 |
. . . . . . . 8
⊢ (𝑔 = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} → (∃*𝑦 𝑥𝑔𝑦 ↔ ∃*𝑦 𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦)) |
114 | 113 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑔 = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} → (∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ↔ ∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦)) |
115 | | breq 5034 |
. . . . . . . . 9
⊢ (𝑔 = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} → (𝑦𝑔𝑥 ↔ 𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥)) |
116 | 115 | rexbidv 3221 |
. . . . . . . 8
⊢ (𝑔 = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} → (∃𝑦 ∈ 𝐵 𝑦𝑔𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥)) |
117 | 116 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑔 = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥)) |
118 | 114, 117 | anbi12d 633 |
. . . . . 6
⊢ (𝑔 = {〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓} → ((∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥) ↔ (∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥))) |
119 | 111, 118 | spcev 3525 |
. . . . 5
⊢
((∀𝑥 ∈
𝐵 ∃*𝑦 𝑥{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦{〈𝑤, 𝑧〉 ∣ {𝑤, 𝑧} ∈ 𝑓}𝑥) → ∃𝑔(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥)) |
120 | 84, 91, 119 | syl2anbr 601 |
. . . 4
⊢
((∀𝑥 ∈
𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓) → ∃𝑔(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥)) |
121 | 120 | exlimiv 1931 |
. . 3
⊢
(∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓) → ∃𝑔(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥)) |
122 | 76, 121 | impbii 212 |
. 2
⊢
(∃𝑔(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑔𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑔𝑥) ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) |
123 | 2, 122 | bitri 278 |
1
⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) |