MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss1 Structured version   Visualization version   GIF version

Theorem disjss1 5045
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3914 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 611 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
32moimdv 2546 . . 3 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
43alimdv 1919 . 2 (𝐴𝐵 → (∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶)))
5 dfdisj2 5041 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
6 dfdisj2 5041 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
74, 5, 63imtr4g 296 1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  ∃*wmo 2538  wss 3887  Disj wdisj 5039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-rmo 3071  df-v 3434  df-in 3894  df-ss 3904  df-disj 5040
This theorem is referenced by:  disjeq1  5046  disjx0  5068  disjxiun  5071  disjss3  5073  volfiniun  24711  uniioovol  24743  uniioombllem4  24750  disjiunel  30935  tocyccntz  31411  carsggect  32285  carsgclctunlem2  32286  omsmeas  32290  sibfof  32307  disjf1o  42729  fsumiunss  43116  sge0iunmptlemre  43953  meadjiunlem  44003  meaiuninclem  44018
  Copyright terms: Public domain W3C validator