MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss1 Structured version   Visualization version   GIF version

Theorem disjss1 5092
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3952 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 611 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
32moimdv 2545 . . 3 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
43alimdv 1916 . 2 (𝐴𝐵 → (∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶)))
5 dfdisj2 5088 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
6 dfdisj2 5088 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
74, 5, 63imtr4g 296 1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2108  ∃*wmo 2537  wss 3926  Disj wdisj 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2539  df-clel 2809  df-rmo 3359  df-ss 3943  df-disj 5087
This theorem is referenced by:  disjeq1  5093  disjx0  5114  disjxiun  5116  disjss3  5118  volfiniun  25500  uniioovol  25532  uniioombllem4  25539  disjiunel  32577  tocyccntz  33155  carsggect  34350  carsgclctunlem2  34351  omsmeas  34355  sibfof  34372  disjf1o  45215  fsumiunss  45604  sge0iunmptlemre  46444  meadjiunlem  46494  meaiuninclem  46509
  Copyright terms: Public domain W3C validator