![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjss1 | Structured version Visualization version GIF version |
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjss1 | ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3989 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | moimdv 2544 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
4 | 3 | alimdv 1914 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
5 | dfdisj2 5117 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
6 | dfdisj2 5117 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) | |
7 | 4, 5, 6 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∈ wcel 2106 ∃*wmo 2536 ⊆ wss 3963 Disj wdisj 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-clel 2814 df-rmo 3378 df-ss 3980 df-disj 5116 |
This theorem is referenced by: disjeq1 5122 disjx0 5143 disjxiun 5145 disjss3 5147 volfiniun 25596 uniioovol 25628 uniioombllem4 25635 disjiunel 32616 tocyccntz 33147 carsggect 34300 carsgclctunlem2 34301 omsmeas 34305 sibfof 34322 disjf1o 45134 fsumiunss 45531 sge0iunmptlemre 46371 meadjiunlem 46421 meaiuninclem 46436 |
Copyright terms: Public domain | W3C validator |