Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjss1 | Structured version Visualization version GIF version |
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjss1 | ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | moimdv 2546 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
4 | 3 | alimdv 1919 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
5 | dfdisj2 5041 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
6 | dfdisj2 5041 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) | |
7 | 4, 5, 6 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∃*wmo 2538 ⊆ wss 3887 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-rmo 3071 df-v 3434 df-in 3894 df-ss 3904 df-disj 5040 |
This theorem is referenced by: disjeq1 5046 disjx0 5068 disjxiun 5071 disjss3 5073 volfiniun 24711 uniioovol 24743 uniioombllem4 24750 disjiunel 30935 tocyccntz 31411 carsggect 32285 carsgclctunlem2 32286 omsmeas 32290 sibfof 32307 disjf1o 42729 fsumiunss 43116 sge0iunmptlemre 43953 meadjiunlem 44003 meaiuninclem 44018 |
Copyright terms: Public domain | W3C validator |