| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmoun | Structured version Visualization version GIF version | ||
| Description: "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| Ref | Expression |
|---|---|
| rmoun | ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mooran2 2550 | . 2 ⊢ (∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 2 | df-rmo 3356 | . . 3 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
| 3 | elun 4119 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
| 5 | andir 1010 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 7 | 6 | mobii 2542 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 8 | 2, 7 | bitri 275 | . 2 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 9 | df-rmo 3356 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 10 | df-rmo 3356 | . . 3 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 11 | 9, 10 | anbi12i 628 | . 2 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) ↔ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 12 | 1, 8, 11 | 3imtr4i 292 | 1 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ∃*wmo 2532 ∃*wrmo 3355 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-rmo 3356 df-v 3452 df-un 3922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |