Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoun Structured version   Visualization version   GIF version

Theorem rmoun 30743
Description: "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Assertion
Ref Expression
rmoun (∃*𝑥 ∈ (𝐴𝐵)𝜑 → (∃*𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑))

Proof of Theorem rmoun
StepHypRef Expression
1 mooran2 2556 . 2 (∃*𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) → (∃*𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐵𝜑)))
2 df-rmo 3071 . . 3 (∃*𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃*𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
3 elun 4079 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43anbi1i 623 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
5 andir 1005 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
64, 5bitri 274 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
76mobii 2548 . . 3 (∃*𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃*𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
82, 7bitri 274 . 2 (∃*𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃*𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
9 df-rmo 3071 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
10 df-rmo 3071 . . 3 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
119, 10anbi12i 626 . 2 ((∃*𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) ↔ (∃*𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐵𝜑)))
121, 8, 113imtr4i 291 1 (∃*𝑥 ∈ (𝐴𝐵)𝜑 → (∃*𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  wcel 2108  ∃*wmo 2538  ∃*wrmo 3066  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-rmo 3071  df-v 3424  df-un 3888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator