Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmoun | Structured version Visualization version GIF version |
Description: "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
rmoun | ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mooran2 2556 | . 2 ⊢ (∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
2 | df-rmo 3071 | . . 3 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
3 | elun 4079 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1i 623 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
5 | andir 1005 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | 6 | mobii 2548 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | 2, 7 | bitri 274 | . 2 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | df-rmo 3071 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
10 | df-rmo 3071 | . . 3 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
11 | 9, 10 | anbi12i 626 | . 2 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) ↔ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
12 | 1, 8, 11 | 3imtr4i 291 | 1 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 ∃*wmo 2538 ∃*wrmo 3066 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-rmo 3071 df-v 3424 df-un 3888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |