![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmoun | Structured version Visualization version GIF version |
Description: "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
rmoun | ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mooran2 2544 | . 2 ⊢ (∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
2 | df-rmo 3363 | . . 3 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
3 | elun 4145 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1i 622 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
5 | andir 1006 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | 6 | mobii 2536 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | 2, 7 | bitri 274 | . 2 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃*𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | df-rmo 3363 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
10 | df-rmo 3363 | . . 3 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
11 | 9, 10 | anbi12i 626 | . 2 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) ↔ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
12 | 1, 8, 11 | 3imtr4i 291 | 1 ⊢ (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 → (∃*𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∈ wcel 2098 ∃*wmo 2526 ∃*wrmo 3362 ∪ cun 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-mo 2528 df-clab 2703 df-cleq 2717 df-clel 2802 df-rmo 3363 df-v 3463 df-un 3949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |