Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmo1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) Adapt to new definition. (Revised by BJ, 1-Oct-2022.) |
Ref | Expression |
---|---|
nfmo1 | ⊢ Ⅎ𝑥∃*𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2539 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | nfa1 2147 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | |
3 | 2 | nfex 2317 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃*𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∃wex 1780 Ⅎwnf 1784 ∃*wmo 2537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 df-nf 1785 df-mo 2539 |
This theorem is referenced by: mo3 2563 nfeu1ALT 2588 moanmo 2623 moexexlem 2627 mopick2 2638 2mo 2649 2eu3 2654 nfrmo1 3381 mob 3662 morex 3664 wl-mo3t 35803 |
Copyright terms: Public domain | W3C validator |