MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmo1 Structured version   Visualization version   GIF version

Theorem nfmo1 2560
Description: Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) Adapt to new definition. (Revised by BJ, 1-Oct-2022.)
Assertion
Ref Expression
nfmo1 𝑥∃*𝑥𝜑

Proof of Theorem nfmo1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2543 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 2152 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 2328 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1851 1 𝑥∃*𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777  wnf 1781  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782  df-mo 2543
This theorem is referenced by:  mo3  2567  nfeu1ALT  2592  moanmo  2625  moexexlem  2629  mopick2  2640  2mo  2651  2eu3  2657  nfrmo1  3419  mob  3739  morex  3741  wl-mo3t  37530
  Copyright terms: Public domain W3C validator