Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmo1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) Adapt to new definition. (Revised by BJ, 1-Oct-2022.) |
Ref | Expression |
---|---|
nfmo1 | ⊢ Ⅎ𝑥∃*𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2538 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | nfa1 2146 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | |
3 | 2 | nfex 2316 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃*𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1779 Ⅎwnf 1783 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-or 846 df-ex 1780 df-nf 1784 df-mo 2538 |
This theorem is referenced by: mo3 2562 nfeu1ALT 2587 moanmo 2622 moexexlem 2626 mopick2 2637 2mo 2648 2eu3 2653 nfrmo1 3313 mob 3657 morex 3659 wl-mo3t 35772 |
Copyright terms: Public domain | W3C validator |