MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq2dvaOLD Structured version   Visualization version   GIF version

Theorem mpteq2dvaOLD 5242
Description: Obsolete version of mpteq2dva 5241 as of 11-Nov-2024. (Contributed by Scott Fenton, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mpteq2dva.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2dvaOLD (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem mpteq2dvaOLD
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜑
2 mpteq2dva.1 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
31, 2mpteq2da 5239 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cmpt 5224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-opab 5205  df-mpt 5225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator