| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elinel2 | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elinel2 | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3967 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) |
| Copyright terms: Public domain | W3C validator |