![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0pssin | Structured version Visualization version GIF version |
Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
Ref | Expression |
---|---|
0pssin | ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pss 4449 | . 2 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ≠ ∅) | |
2 | ndisj 4370 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∩ cin 3946 ⊊ wpss 3948 ∅c0 4325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-v 3464 df-dif 3950 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |