Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0pssin | Structured version Visualization version GIF version |
Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
Ref | Expression |
---|---|
0pssin | ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pss 4378 | . 2 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ≠ ∅) | |
2 | ndisj 4301 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3885 ⊊ wpss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3431 df-dif 3889 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |