Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0pssin Structured version   Visualization version   GIF version

Theorem 0pssin 43767
Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.)
Assertion
Ref Expression
0pssin (∅ ⊊ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem 0pssin
StepHypRef Expression
1 0pss 4413 . 2 (∅ ⊊ (𝐴𝐵) ↔ (𝐴𝐵) ≠ ∅)
2 ndisj 4336 . 2 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
31, 2bitri 275 1 (∅ ⊊ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  wne 2926  cin 3916  wpss 3918  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator