Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0pssin | Structured version Visualization version GIF version |
Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
Ref | Expression |
---|---|
0pssin | ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pss 4375 | . 2 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ≠ ∅) | |
2 | ndisj 4298 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊊ wpss 3884 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |