| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0pssin | Structured version Visualization version GIF version | ||
| Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
| Ref | Expression |
|---|---|
| 0pssin | ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pss 4398 | . 2 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ≠ ∅) | |
| 2 | ndisj 4321 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ≠ wne 2930 ∩ cin 3898 ⊊ wpss 3900 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-v 3440 df-dif 3902 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |