| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
| Ref | Expression |
|---|---|
| necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon3bbii 2972 necon3bii 2977 nesym 2981 rabn0 4352 dffr6 5594 xpimasn 6158 rankxplim3 9834 rankxpsuc 9835 dflt2 13108 gcd0id 16489 lcmfunsnlem2 16610 axlowdimlem13 28881 hashxpe 32732 ssdifidllem 33427 ssmxidllem 33444 fedgmullem2 33626 gonanegoal 35339 filnetlem4 36369 dihatlat 41328 sn-00id 42389 pellex 42823 nev 43759 ldepspr 48462 |
| Copyright terms: Public domain | W3C validator |