MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2971
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2926 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 334 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  necon3bbii  2972  necon3bii  2977  nesym  2981  rabn0  4352  dffr6  5594  xpimasn  6158  rankxplim3  9834  rankxpsuc  9835  dflt2  13108  gcd0id  16489  lcmfunsnlem2  16610  axlowdimlem13  28881  hashxpe  32732  ssdifidllem  33427  ssmxidllem  33444  fedgmullem2  33626  gonanegoal  35339  filnetlem4  36369  dihatlat  41328  sn-00id  42389  pellex  42823  nev  43759  ldepspr  48462
  Copyright terms: Public domain W3C validator