MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2993
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2947 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 334 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2947
This theorem is referenced by:  necon3bbii  2994  necon3bii  2999  nesym  3003  rabn0  4412  dffr6  5655  xpimasn  6218  rankxplim3  9952  rankxpsuc  9953  dflt2  13212  gcd0id  16567  lcmfunsnlem2  16689  axlowdimlem13  28989  hashxpe  32816  ssdifidllem  33451  ssmxidllem  33468  fedgmullem2  33645  gonanegoal  35322  filnetlem4  36349  dihatlat  41293  sn-00id  42379  pellex  42793  nev  43734  ldepspr  48204
  Copyright terms: Public domain W3C validator