MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2974
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2929 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 334 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  necon3bbii  2975  necon3bii  2980  nesym  2984  rabn0  4339  dffr6  5572  xpimasn  6132  rankxplim3  9771  rankxpsuc  9772  dflt2  13044  gcd0id  16427  lcmfunsnlem2  16548  axlowdimlem13  28930  hashxpe  32784  ssdifidllem  33416  ssmxidllem  33433  fedgmullem2  33638  gonanegoal  35384  filnetlem4  36414  dihatlat  41372  sn-00id  42433  pellex  42867  nev  43802  ldepspr  48504
  Copyright terms: Public domain W3C validator