| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
| Ref | Expression |
|---|---|
| necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon3bbii 2976 necon3bii 2981 nesym 2985 rabn0 4338 dffr6 5575 xpimasn 6137 rankxplim3 9781 rankxpsuc 9782 dflt2 13049 gcd0id 16432 lcmfunsnlem2 16553 axlowdimlem13 28934 hashxpe 32794 ssdifidllem 33428 ssmxidllem 33445 fedgmullem2 33664 gonanegoal 35417 filnetlem4 36446 dihatlat 41453 sn-00id 42519 pellex 42952 nev 43887 ldepspr 48598 |
| Copyright terms: Public domain | W3C validator |