| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
| Ref | Expression |
|---|---|
| necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon3bbii 2973 necon3bii 2978 nesym 2982 rabn0 4354 dffr6 5596 xpimasn 6160 rankxplim3 9840 rankxpsuc 9841 dflt2 13114 gcd0id 16495 lcmfunsnlem2 16616 axlowdimlem13 28887 hashxpe 32738 ssdifidllem 33433 ssmxidllem 33450 fedgmullem2 33632 gonanegoal 35339 filnetlem4 36364 dihatlat 41323 sn-00id 42384 pellex 42816 nev 43752 ldepspr 48452 |
| Copyright terms: Public domain | W3C validator |