![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
Ref | Expression |
---|---|
necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
Ref | Expression |
---|---|
necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon3bbii 2994 necon3bii 2999 nesym 3003 rabn0 4412 dffr6 5655 xpimasn 6218 rankxplim3 9952 rankxpsuc 9953 dflt2 13212 gcd0id 16567 lcmfunsnlem2 16689 axlowdimlem13 28989 hashxpe 32816 ssdifidllem 33451 ssmxidllem 33468 fedgmullem2 33645 gonanegoal 35322 filnetlem4 36349 dihatlat 41293 sn-00id 42379 pellex 42793 nev 43734 ldepspr 48204 |
Copyright terms: Public domain | W3C validator |