Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
Ref | Expression |
---|---|
necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
Ref | Expression |
---|---|
necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
3 | 1, 2 | xchbinx 333 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon3bbii 2990 necon3bii 2995 nesym 2999 rabn0 4316 dffr6 5538 xpimasn 6077 rankxplim3 9570 rankxpsuc 9571 dflt2 12811 gcd0id 16154 lcmfunsnlem2 16273 axlowdimlem13 27225 hashxpe 31029 ssmxidllem 31543 fedgmullem2 31613 gonanegoal 33214 filnetlem4 34497 dihatlat 39275 pellex 40573 nev 41267 ldepspr 45702 |
Copyright terms: Public domain | W3C validator |