MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2989
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2943 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 333 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  necon3bbii  2990  necon3bii  2995  nesym  2999  rabn0  4316  dffr6  5538  xpimasn  6077  rankxplim3  9570  rankxpsuc  9571  dflt2  12811  gcd0id  16154  lcmfunsnlem2  16273  axlowdimlem13  27225  hashxpe  31029  ssmxidllem  31543  fedgmullem2  31613  gonanegoal  33214  filnetlem4  34497  dihatlat  39275  pellex  40573  nev  41267  ldepspr  45702
  Copyright terms: Public domain W3C validator