| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
| Ref | Expression |
|---|---|
| necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon3bbii 2975 necon3bii 2980 nesym 2984 rabn0 4339 dffr6 5572 xpimasn 6132 rankxplim3 9771 rankxpsuc 9772 dflt2 13044 gcd0id 16427 lcmfunsnlem2 16548 axlowdimlem13 28930 hashxpe 32784 ssdifidllem 33416 ssmxidllem 33433 fedgmullem2 33638 gonanegoal 35384 filnetlem4 36414 dihatlat 41372 sn-00id 42433 pellex 42867 nev 43802 ldepspr 48504 |
| Copyright terms: Public domain | W3C validator |