MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2977
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2932 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 334 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  wne 2931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2932
This theorem is referenced by:  necon3bbii  2978  necon3bii  2983  nesym  2987  rabn0  4369  dffr6  5620  xpimasn  6185  rankxplim3  9903  rankxpsuc  9904  dflt2  13172  gcd0id  16538  lcmfunsnlem2  16659  axlowdimlem13  28899  hashxpe  32750  ssdifidllem  33419  ssmxidllem  33436  fedgmullem2  33616  gonanegoal  35316  filnetlem4  36341  dihatlat  41295  sn-00id  42394  pellex  42809  nev  43745  ldepspr  48348
  Copyright terms: Public domain W3C validator