![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
Ref | Expression |
---|---|
necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
Ref | Expression |
---|---|
necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2941 |
This theorem is referenced by: necon3bbii 2988 necon3bii 2993 nesym 2997 rabn0 4398 dffr6 5648 xpimasn 6213 rankxplim3 9928 rankxpsuc 9929 dflt2 13196 gcd0id 16562 lcmfunsnlem2 16683 axlowdimlem13 28995 hashxpe 32831 ssdifidllem 33496 ssmxidllem 33513 fedgmullem2 33690 gonanegoal 35350 filnetlem4 36376 dihatlat 41331 sn-00id 42424 pellex 42839 nev 43776 ldepspr 48357 |
Copyright terms: Public domain | W3C validator |