| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
| Ref | Expression |
|---|---|
| necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2932 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2932 |
| This theorem is referenced by: necon3bbii 2978 necon3bii 2983 nesym 2987 rabn0 4369 dffr6 5620 xpimasn 6185 rankxplim3 9903 rankxpsuc 9904 dflt2 13172 gcd0id 16538 lcmfunsnlem2 16659 axlowdimlem13 28899 hashxpe 32750 ssdifidllem 33419 ssmxidllem 33436 fedgmullem2 33616 gonanegoal 35316 filnetlem4 36341 dihatlat 41295 sn-00id 42394 pellex 42809 nev 43745 ldepspr 48348 |
| Copyright terms: Public domain | W3C validator |