MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2987
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2941 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 334 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2941
This theorem is referenced by:  necon3bbii  2988  necon3bii  2993  nesym  2997  rabn0  4398  dffr6  5648  xpimasn  6213  rankxplim3  9928  rankxpsuc  9929  dflt2  13196  gcd0id  16562  lcmfunsnlem2  16683  axlowdimlem13  28995  hashxpe  32831  ssdifidllem  33496  ssmxidllem  33513  fedgmullem2  33690  gonanegoal  35350  filnetlem4  36376  dihatlat  41331  sn-00id  42424  pellex  42839  nev  43776  ldepspr  48357
  Copyright terms: Public domain W3C validator