MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2975
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2930 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 334 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2930
This theorem is referenced by:  necon3bbii  2976  necon3bii  2981  nesym  2985  rabn0  4338  dffr6  5575  xpimasn  6137  rankxplim3  9781  rankxpsuc  9782  dflt2  13049  gcd0id  16432  lcmfunsnlem2  16553  axlowdimlem13  28934  hashxpe  32794  ssdifidllem  33428  ssmxidllem  33445  fedgmullem2  33664  gonanegoal  35417  filnetlem4  36446  dihatlat  41453  sn-00id  42519  pellex  42952  nev  43887  ldepspr  48598
  Copyright terms: Public domain W3C validator