Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3abii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
Ref | Expression |
---|---|
necon3abii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
Ref | Expression |
---|---|
necon3abii | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abii.1 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝜑) | |
3 | 1, 2 | xchbinx 334 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon3bbii 2991 necon3bii 2996 nesym 3000 rabn0 4319 dffr6 5547 xpimasn 6088 rankxplim3 9639 rankxpsuc 9640 dflt2 12882 gcd0id 16226 lcmfunsnlem2 16345 axlowdimlem13 27322 hashxpe 31127 ssmxidllem 31641 fedgmullem2 31711 gonanegoal 33314 filnetlem4 34570 dihatlat 39348 pellex 40657 nev 41378 ldepspr 45814 |
Copyright terms: Public domain | W3C validator |