MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3abii Structured version   Visualization version   GIF version

Theorem necon3abii 2985
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1 (𝐴 = 𝐵𝜑)
Assertion
Ref Expression
necon3abii (𝐴𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2939 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3abii.1 . 2 (𝐴 = 𝐵𝜑)
31, 2xchbinx 333 1 (𝐴𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wne 2938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2939
This theorem is referenced by:  necon3bbii  2986  necon3bii  2991  nesym  2995  rabn0  4384  dffr6  5633  xpimasn  6183  rankxplim3  9878  rankxpsuc  9879  dflt2  13131  gcd0id  16464  lcmfunsnlem2  16581  axlowdimlem13  28479  hashxpe  32286  ssmxidllem  32863  fedgmullem2  33003  gonanegoal  34641  filnetlem4  35569  dihatlat  40508  sn-00id  41576  pellex  41875  nev  42823  ldepspr  47241
  Copyright terms: Public domain W3C validator