| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfso | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfpo.r | ⊢ Ⅎ𝑥𝑅 |
| nfpo.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfso | ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so 5547 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎))) | |
| 2 | nfpo.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nfpo.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfpo 5552 | . . 3 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| 5 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥𝑎 | |
| 6 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
| 7 | 5, 2, 6 | nfbr 5154 | . . . . . 6 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 8 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑎 = 𝑏 | |
| 9 | 6, 2, 5 | nfbr 5154 | . . . . . 6 ⊢ Ⅎ𝑥 𝑏𝑅𝑎 |
| 10 | 7, 8, 9 | nf3or 1905 | . . . . 5 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) |
| 11 | 3, 10 | nfralw 3285 | . . . 4 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) |
| 12 | 3, 11 | nfralw 3285 | . . 3 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) |
| 13 | 4, 12 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝑅 Po 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
| 14 | 1, 13 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝑅 Or 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ w3o 1085 Ⅎwnf 1783 Ⅎwnfc 2876 ∀wral 3044 class class class wbr 5107 Po wpo 5544 Or wor 5545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-po 5546 df-so 5547 |
| This theorem is referenced by: nfwe 5613 weiunso 36454 |
| Copyright terms: Public domain | W3C validator |