Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfso Structured version   Visualization version   GIF version

Theorem nfso 5445
 Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfso 𝑥 𝑅 Or 𝐴

Proof of Theorem nfso
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5440 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)))
2 nfpo.r . . . 4 𝑥𝑅
3 nfpo.a . . . 4 𝑥𝐴
42, 3nfpo 5444 . . 3 𝑥 𝑅 Po 𝐴
5 nfcv 2955 . . . . . . 7 𝑥𝑎
6 nfcv 2955 . . . . . . 7 𝑥𝑏
75, 2, 6nfbr 5078 . . . . . 6 𝑥 𝑎𝑅𝑏
8 nfv 1915 . . . . . 6 𝑥 𝑎 = 𝑏
96, 2, 5nfbr 5078 . . . . . 6 𝑥 𝑏𝑅𝑎
107, 8, 9nf3or 1906 . . . . 5 𝑥(𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
113, 10nfralw 3189 . . . 4 𝑥𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
123, 11nfralw 3189 . . 3 𝑥𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
134, 12nfan 1900 . 2 𝑥(𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
141, 13nfxfr 1854 1 𝑥 𝑅 Or 𝐴
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   ∨ w3o 1083  Ⅎwnf 1785  Ⅎwnfc 2936  ∀wral 3106   class class class wbr 5031   Po wpo 5437   Or wor 5438 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-v 3443  df-dif 3884  df-un 3886  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5032  df-po 5439  df-so 5440 This theorem is referenced by:  nfwe  5496
 Copyright terms: Public domain W3C validator