MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfso Structured version   Visualization version   GIF version

Theorem nfso 5474
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfso 𝑥 𝑅 Or 𝐴

Proof of Theorem nfso
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5469 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)))
2 nfpo.r . . . 4 𝑥𝑅
3 nfpo.a . . . 4 𝑥𝐴
42, 3nfpo 5473 . . 3 𝑥 𝑅 Po 𝐴
5 nfcv 2904 . . . . . . 7 𝑥𝑎
6 nfcv 2904 . . . . . . 7 𝑥𝑏
75, 2, 6nfbr 5100 . . . . . 6 𝑥 𝑎𝑅𝑏
8 nfv 1922 . . . . . 6 𝑥 𝑎 = 𝑏
96, 2, 5nfbr 5100 . . . . . 6 𝑥 𝑏𝑅𝑎
107, 8, 9nf3or 1913 . . . . 5 𝑥(𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
113, 10nfralw 3147 . . . 4 𝑥𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
123, 11nfralw 3147 . . 3 𝑥𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
134, 12nfan 1907 . 2 𝑥(𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
141, 13nfxfr 1860 1 𝑥 𝑅 Or 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3o 1088  wnf 1791  wnfc 2884  wral 3061   class class class wbr 5053   Po wpo 5466   Or wor 5467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-po 5468  df-so 5469
This theorem is referenced by:  nfwe  5527
  Copyright terms: Public domain W3C validator