MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfso Structured version   Visualization version   GIF version

Theorem nfso 5593
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfso 𝑥 𝑅 Or 𝐴

Proof of Theorem nfso
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5588 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)))
2 nfpo.r . . . 4 𝑥𝑅
3 nfpo.a . . . 4 𝑥𝐴
42, 3nfpo 5592 . . 3 𝑥 𝑅 Po 𝐴
5 nfcv 2903 . . . . . . 7 𝑥𝑎
6 nfcv 2903 . . . . . . 7 𝑥𝑏
75, 2, 6nfbr 5194 . . . . . 6 𝑥 𝑎𝑅𝑏
8 nfv 1917 . . . . . 6 𝑥 𝑎 = 𝑏
96, 2, 5nfbr 5194 . . . . . 6 𝑥 𝑏𝑅𝑎
107, 8, 9nf3or 1908 . . . . 5 𝑥(𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
113, 10nfralw 3308 . . . 4 𝑥𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
123, 11nfralw 3308 . . 3 𝑥𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎)
134, 12nfan 1902 . 2 𝑥(𝑅 Po 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
141, 13nfxfr 1855 1 𝑥 𝑅 Or 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3o 1086  wnf 1785  wnfc 2883  wral 3061   class class class wbr 5147   Po wpo 5585   Or wor 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-po 5587  df-so 5588
This theorem is referenced by:  nfwe  5651
  Copyright terms: Public domain W3C validator