MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfor Structured version   Visualization version   GIF version

Theorem nfor 1868
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
Assertion
Ref Expression
nfor 𝑥(𝜑𝜓)

Proof of Theorem nfor
StepHypRef Expression
1 df-or 835 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
2 nf.1 . . . 4 𝑥𝜑
32nfn 1820 . . 3 𝑥 ¬ 𝜑
4 nf.2 . . 3 𝑥𝜓
53, 4nfim 1860 . 2 𝑥𝜑𝜓)
61, 5nfxfr 1816 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 834  wnf 1747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-ex 1744  df-nf 1748
This theorem is referenced by:  nf3or  1869  axi12  2739  axi12OLD  2740  axbnd  2741  nfun  4023  nfpr  4498  rabsnifsb  4528  disjxun  4923  fsuppmapnn0fiubex  13173  nfsum1  14905  nfsum  14906  nfcprod1  15122  nfcprod  15123  fdc1  34500  dvdsrabdioph  38841  disjinfi  40913  iundjiun  42207
  Copyright terms: Public domain W3C validator