Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 845 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1860 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1899 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
6 | 1, 5 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nf3or 1908 axi12 2707 axbnd 2708 nfun 4099 nfpr 4626 rabsnifsb 4658 disjxun 5072 fsuppmapnn0fiubex 13712 nfsum1 15401 nfsum 15402 nfsumOLD 15403 nfcprod1 15620 nfcprod 15621 fdc1 35904 dvdsrabdioph 40632 mnringmulrcld 41846 disjinfi 42731 iundjiun 43998 |
Copyright terms: Public domain | W3C validator |