MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfor Structured version   Visualization version   GIF version

Theorem nfor 1905
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
Assertion
Ref Expression
nfor 𝑥(𝜑𝜓)

Proof of Theorem nfor
StepHypRef Expression
1 df-or 848 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
2 nf.1 . . . 4 𝑥𝜑
32nfn 1858 . . 3 𝑥 ¬ 𝜑
4 nf.2 . . 3 𝑥𝜓
53, 4nfim 1897 . 2 𝑥𝜑𝜓)
61, 5nfxfr 1854 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  nf3or  1906  axi12  2703  axbnd  2704  nfun  4119  nfunOLD  4120  nfpr  4644  rabsnifsb  4674  disjxun  5091  fsuppmapnn0fiubex  13901  nfsum1  15599  nfsum  15600  nfcprod1  15817  nfcprod  15818  fdc1  37807  dvdsrabdioph  42928  mnringmulrcld  44346  disjinfi  45314  iundjiun  46583
  Copyright terms: Public domain W3C validator