| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1896 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nf3or 1905 axi12 2700 axbnd 2701 nfun 4136 nfunOLD 4137 nfpr 4659 rabsnifsb 4689 disjxun 5108 fsuppmapnn0fiubex 13964 nfsum1 15663 nfsum 15664 nfcprod1 15881 nfcprod 15882 fdc1 37747 dvdsrabdioph 42805 mnringmulrcld 44224 disjinfi 45193 iundjiun 46465 |
| Copyright terms: Public domain | W3C validator |