Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfor Structured version   Visualization version   GIF version

Theorem nfor 1905
 Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
Assertion
Ref Expression
nfor 𝑥(𝜑𝜓)

Proof of Theorem nfor
StepHypRef Expression
1 df-or 845 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
2 nf.1 . . . 4 𝑥𝜑
32nfn 1858 . . 3 𝑥 ¬ 𝜑
4 nf.2 . . 3 𝑥𝜓
53, 4nfim 1897 . 2 𝑥𝜑𝜓)
61, 5nfxfr 1854 1 𝑥(𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 844  Ⅎwnf 1785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786 This theorem is referenced by:  nf3or  1906  axi12  2771  axbnd  2772  nfun  4095  nfpr  4591  rabsnifsb  4621  disjxun  5031  fsuppmapnn0fiubex  13359  nfsum1  15042  nfsum  15043  nfsumOLD  15044  nfcprod1  15260  nfcprod  15261  fdc1  35183  dvdsrabdioph  39744  mnringmulrcld  40929  disjinfi  41813  iundjiun  43092
 Copyright terms: Public domain W3C validator