MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfor Structured version   Visualization version   GIF version

Theorem nfor 1904
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
Assertion
Ref Expression
nfor 𝑥(𝜑𝜓)

Proof of Theorem nfor
StepHypRef Expression
1 df-or 848 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
2 nf.1 . . . 4 𝑥𝜑
32nfn 1857 . . 3 𝑥 ¬ 𝜑
4 nf.2 . . 3 𝑥𝜓
53, 4nfim 1896 . 2 𝑥𝜑𝜓)
61, 5nfxfr 1853 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nf3or  1905  axi12  2699  axbnd  2700  nfun  4123  nfunOLD  4124  nfpr  4646  rabsnifsb  4676  disjxun  5093  fsuppmapnn0fiubex  13917  nfsum1  15615  nfsum  15616  nfcprod1  15833  nfcprod  15834  fdc1  37728  dvdsrabdioph  42786  mnringmulrcld  44204  disjinfi  45173  iundjiun  46445
  Copyright terms: Public domain W3C validator