| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1896 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nf3or 1905 axi12 2699 axbnd 2700 nfun 4123 nfunOLD 4124 nfpr 4646 rabsnifsb 4676 disjxun 5093 fsuppmapnn0fiubex 13917 nfsum1 15615 nfsum 15616 nfcprod1 15833 nfcprod 15834 fdc1 37728 dvdsrabdioph 42786 mnringmulrcld 44204 disjinfi 45173 iundjiun 46445 |
| Copyright terms: Public domain | W3C validator |