| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1896 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nf3or 1905 axi12 2705 axbnd 2706 nfun 4145 nfunOLD 4146 nfpr 4668 rabsnifsb 4698 disjxun 5117 fsuppmapnn0fiubex 14010 nfsum1 15706 nfsum 15707 nfcprod1 15924 nfcprod 15925 fdc1 37770 dvdsrabdioph 42833 mnringmulrcld 44252 disjinfi 45216 iundjiun 46489 |
| Copyright terms: Public domain | W3C validator |