![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 835 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1820 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1860 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
6 | 1, 5 | nfxfr 1816 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 834 Ⅎwnf 1747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-ex 1744 df-nf 1748 |
This theorem is referenced by: nf3or 1869 axi12 2739 axi12OLD 2740 axbnd 2741 nfun 4023 nfpr 4498 rabsnifsb 4528 disjxun 4923 fsuppmapnn0fiubex 13173 nfsum1 14905 nfsum 14906 nfcprod1 15122 nfcprod 15123 fdc1 34500 dvdsrabdioph 38841 disjinfi 40913 iundjiun 42207 |
Copyright terms: Public domain | W3C validator |