Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 844 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1861 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1900 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
6 | 1, 5 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nf3or 1909 axi12 2707 axbnd 2708 nfun 4095 nfpr 4623 rabsnifsb 4655 disjxun 5068 fsuppmapnn0fiubex 13640 nfsum1 15329 nfsum 15330 nfsumOLD 15331 nfcprod1 15548 nfcprod 15549 fdc1 35831 dvdsrabdioph 40548 mnringmulrcld 41735 disjinfi 42620 iundjiun 43888 |
Copyright terms: Public domain | W3C validator |