| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1858 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1897 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
| 6 | 1, 5 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nf3or 1906 axi12 2703 axbnd 2704 nfun 4119 nfunOLD 4120 nfpr 4644 rabsnifsb 4674 disjxun 5091 fsuppmapnn0fiubex 13901 nfsum1 15599 nfsum 15600 nfcprod1 15817 nfcprod 15818 fdc1 37807 dvdsrabdioph 42928 mnringmulrcld 44346 disjinfi 45314 iundjiun 46583 |
| Copyright terms: Public domain | W3C validator |