MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfor Structured version   Visualization version   GIF version

Theorem nfor 1907
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
Assertion
Ref Expression
nfor 𝑥(𝜑𝜓)

Proof of Theorem nfor
StepHypRef Expression
1 df-or 846 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
2 nf.1 . . . 4 𝑥𝜑
32nfn 1860 . . 3 𝑥 ¬ 𝜑
4 nf.2 . . 3 𝑥𝜓
53, 4nfim 1899 . 2 𝑥𝜑𝜓)
61, 5nfxfr 1855 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845  wnf 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1782  df-nf 1786
This theorem is referenced by:  nf3or  1908  axi12  2706  axbnd  2707  nfun  4120  nfpr  4646  rabsnifsb  4678  disjxun  5098  fsuppmapnn0fiubex  13822  nfsum1  15505  nfsum  15506  nfsumOLD  15507  nfcprod1  15724  nfcprod  15725  fdc1  36060  dvdsrabdioph  40945  mnringmulrcld  42219  disjinfi  43110  iundjiun  44387
  Copyright terms: Public domain W3C validator