![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfor | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎ𝑥𝜑 |
nf.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 844 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1858 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | nf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1897 | . 2 ⊢ Ⅎ𝑥(¬ 𝜑 → 𝜓) |
6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-nf 1784 |
This theorem is referenced by: nf3or 1906 axi12 2699 axbnd 2700 nfun 4166 nfpr 4695 rabsnifsb 4727 disjxun 5147 fsuppmapnn0fiubex 13963 nfsum1 15642 nfsum 15643 nfcprod1 15860 nfcprod 15861 fdc1 36919 dvdsrabdioph 41852 mnringmulrcld 43291 disjinfi 44191 iundjiun 45476 |
Copyright terms: Public domain | W3C validator |