MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfceqdfOLD Structured version   Visualization version   GIF version

Theorem nfceqdfOLD 2903
Description: Obsolete version of nfceqdf 2902 as of 23-Aug-2024. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfceqdf.1 𝑥𝜑
nfceqdf.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nfceqdfOLD (𝜑 → (𝑥𝐴𝑥𝐵))

Proof of Theorem nfceqdfOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4 𝑥𝜑
2 nfceqdf.2 . . . . 5 (𝜑𝐴 = 𝐵)
32eleq2d 2824 . . . 4 (𝜑 → (𝑦𝐴𝑦𝐵))
41, 3nfbidf 2217 . . 3 (𝜑 → (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑦𝐵))
54albidv 1923 . 2 (𝜑 → (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑦𝑥 𝑦𝐵))
6 df-nfc 2889 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
7 df-nfc 2889 . 2 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
85, 6, 73bitr4g 314 1 (𝜑 → (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator