Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfceqdfOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfceqdf 2902 as of 23-Aug-2024. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfceqdf.1 | ⊢ Ⅎ𝑥𝜑 |
nfceqdf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
nfceqdfOLD | ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfceqdf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | nfceqdf.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
4 | 1, 3 | nfbidf 2217 | . . 3 ⊢ (𝜑 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵)) |
5 | 4 | albidv 1923 | . 2 ⊢ (𝜑 → (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵)) |
6 | df-nfc 2889 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
7 | df-nfc 2889 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-cleq 2730 df-clel 2816 df-nfc 2889 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |