MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfceqi Structured version   Visualization version   GIF version

Theorem nfceqi 2904
Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-12 2171. (Revised by Wolf Lammen, 19-Jun-2023.)
Hypothesis
Ref Expression
nfceqi.1 𝐴 = 𝐵
Assertion
Ref Expression
nfceqi (𝑥𝐴𝑥𝐵)

Proof of Theorem nfceqi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfceqi.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2830 . . . 4 (𝑦𝐴𝑦𝐵)
32nfbii 1854 . . 3 (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑦𝐵)
43albii 1822 . 2 (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑦𝑥 𝑦𝐵)
5 df-nfc 2889 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
6 df-nfc 2889 . 2 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
74, 5, 63bitr4i 303 1 (𝑥𝐴𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by:  nfcxfr  2905  nfcxfrd  2906
  Copyright terms: Public domain W3C validator