| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfceqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-12 2180. (Revised by Wolf Lammen, 19-Jun-2023.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| nfceqi | ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqi.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2823 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
| 3 | 2 | nfbii 1853 | . . 3 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 4 | 3 | albii 1820 | . 2 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 5 | df-nfc 2881 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 6 | df-nfc 2881 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 |
| This theorem is referenced by: nfcxfr 2892 nfcxfrd 2893 |
| Copyright terms: Public domain | W3C validator |