MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2890
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2888 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 234 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-cleq 2721  df-clel 2803  df-nfc 2878
This theorem is referenced by:  nfcsb1d  3873  nfcsbd  3876  nfcsbw  3877  nfifd  4506  nfunid  4864  nfopabd  5160  nfiotadw  6441  nfiotad  6443  nfriotadw  7314  nfriotad  7317  nfovd  7378  nfttrcld  9606  nfnegd  11358  nfxnegd  45424  nfintd  49662  nfiund  49663  nfiundg  49664
  Copyright terms: Public domain W3C validator