MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2890
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2888 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 234 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-cleq 2721  df-clel 2803  df-nfc 2878
This theorem is referenced by:  nfcsb1d  3881  nfcsbd  3884  nfcsbw  3885  nfifd  4514  nfunid  4873  nfopabd  5170  nfiotadw  6455  nfiotad  6457  nfriotadw  7334  nfriotad  7337  nfovd  7398  nfttrcld  9639  nfnegd  11392  nfxnegd  45410  nfintd  49635  nfiund  49636  nfiundg  49637
  Copyright terms: Public domain W3C validator