![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcxfrd | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcxfr.1 | ⊢ 𝐴 = 𝐵 |
nfcxfrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcxfrd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | nfcxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | nfceqi 2900 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-cleq 2727 df-clel 2814 df-nfc 2890 |
This theorem is referenced by: nfcsb1d 3931 nfcsbd 3934 nfcsbw 3935 nfifd 4560 nfunid 4918 nfopabd 5216 nfiotadw 6519 nfiotad 6521 nfriotadw 7396 nfriotad 7399 nfovd 7460 nfttrcld 9748 nfnegd 11501 nfxnegd 45391 nfintd 48904 nfiund 48905 nfiundg 48906 |
Copyright terms: Public domain | W3C validator |