MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2891
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2889 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 234 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-cleq 2722  df-clel 2804  df-nfc 2879
This theorem is referenced by:  nfcsb1d  3887  nfcsbd  3890  nfcsbw  3891  nfifd  4521  nfunid  4880  nfopabd  5178  nfiotadw  6470  nfiotad  6472  nfriotadw  7355  nfriotad  7358  nfovd  7419  nfttrcld  9670  nfnegd  11423  nfxnegd  45444  nfintd  49666  nfiund  49667  nfiundg  49668
  Copyright terms: Public domain W3C validator