| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcxfrd | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcxfr.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfcxfrd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfrd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | nfcxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2888 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 |
| This theorem is referenced by: nfcsb1d 3884 nfcsbd 3887 nfcsbw 3888 nfifd 4518 nfunid 4877 nfopabd 5175 nfiotadw 6467 nfiotad 6469 nfriotadw 7352 nfriotad 7355 nfovd 7416 nfttrcld 9663 nfnegd 11416 nfxnegd 45437 nfintd 49662 nfiund 49663 nfiundg 49664 |
| Copyright terms: Public domain | W3C validator |