MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2905
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2903 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 233 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-cleq 2730  df-clel 2817  df-nfc 2888
This theorem is referenced by:  nfcsb1d  3851  nfcsbd  3854  nfcsbw  3855  nfifd  4485  nfunid  4842  nfopabd  5138  nfiotadw  6379  nfiotad  6381  nfriotadw  7220  nfriotad  7224  nfovd  7284  nfnegd  11146  nfttrcld  33696  nfxnegd  42871  nfintd  46265  nfiund  46266  nfiundg  46267
  Copyright terms: Public domain W3C validator