MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2902
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2900 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 233 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wnfc 2883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-nf 1786  df-cleq 2724  df-clel 2810  df-nfc 2885
This theorem is referenced by:  nfcsb1d  3916  nfcsbd  3919  nfcsbw  3920  nfifd  4557  nfunid  4914  nfopabd  5216  nfiotadw  6498  nfiotad  6500  nfriotadw  7372  nfriotad  7376  nfovd  7437  nfttrcld  9704  nfnegd  11454  nfxnegd  44141  nfintd  47708  nfiund  47709  nfiundg  47710
  Copyright terms: Public domain W3C validator