MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2893
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2891 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 234 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-cleq 2723  df-clel 2806  df-nfc 2881
This theorem is referenced by:  nfcsb1d  3867  nfcsbd  3870  nfcsbw  3871  nfifd  4502  nfunid  4862  nfopabd  5157  nfiotadw  6440  nfiotad  6442  nfriotadw  7311  nfriotad  7314  nfovd  7375  nfttrcld  9600  nfnegd  11355  nfchnd  18517  nfxnegd  45549  nfintd  49784  nfiund  49785  nfiundg  49786
  Copyright terms: Public domain W3C validator