MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2907
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2905 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 234 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895
This theorem is referenced by:  nfcsb1d  3944  nfcsbd  3947  nfcsbw  3948  nfifd  4577  nfunid  4937  nfopabd  5234  nfiotadw  6528  nfiotad  6530  nfriotadw  7412  nfriotad  7416  nfovd  7477  nfttrcld  9779  nfnegd  11531  nfxnegd  45356  nfintd  48765  nfiund  48766  nfiundg  48767
  Copyright terms: Public domain W3C validator