![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcxfrd | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcxfr.1 | ⊢ 𝐴 = 𝐵 |
nfcxfrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcxfrd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | nfcxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | nfceqi 2905 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 |
This theorem is referenced by: nfcsb1d 3944 nfcsbd 3947 nfcsbw 3948 nfifd 4577 nfunid 4937 nfopabd 5234 nfiotadw 6528 nfiotad 6530 nfriotadw 7412 nfriotad 7416 nfovd 7477 nfttrcld 9779 nfnegd 11531 nfxnegd 45356 nfintd 48765 nfiund 48766 nfiundg 48767 |
Copyright terms: Public domain | W3C validator |