| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcxfrd | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcxfr.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfcxfrd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfrd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | nfcxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2895 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-cleq 2727 df-clel 2809 df-nfc 2885 |
| This theorem is referenced by: nfcsb1d 3896 nfcsbd 3899 nfcsbw 3900 nfifd 4530 nfunid 4889 nfopabd 5187 nfiotadw 6487 nfiotad 6489 nfriotadw 7370 nfriotad 7373 nfovd 7434 nfttrcld 9724 nfnegd 11477 nfxnegd 45468 nfintd 49537 nfiund 49538 nfiundg 49539 |
| Copyright terms: Public domain | W3C validator |