MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcxfrd Structured version   Visualization version   GIF version

Theorem nfcxfrd 2906
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcxfr.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfcxfr.1 . . 3 𝐴 = 𝐵
32nfceqi 2904 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 233 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by:  nfcsb1d  3855  nfcsbd  3858  nfcsbw  3859  nfifd  4488  nfunid  4845  nfopabd  5142  nfiotadw  6394  nfiotad  6396  nfriotadw  7240  nfriotad  7244  nfovd  7304  nfttrcld  9468  nfnegd  11216  nfxnegd  42981  nfintd  46379  nfiund  46380  nfiundg  46381
  Copyright terms: Public domain W3C validator