![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcxfrd | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcxfr.1 | ⊢ 𝐴 = 𝐵 |
nfcxfrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcxfrd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | nfcxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | nfceqi 2900 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 df-cleq 2724 df-clel 2810 df-nfc 2885 |
This theorem is referenced by: nfcsb1d 3916 nfcsbd 3919 nfcsbw 3920 nfifd 4557 nfunid 4914 nfopabd 5216 nfiotadw 6498 nfiotad 6500 nfriotadw 7372 nfriotad 7376 nfovd 7437 nfttrcld 9704 nfnegd 11454 nfxnegd 44141 nfintd 47708 nfiund 47709 nfiundg 47710 |
Copyright terms: Public domain | W3C validator |