|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfia1 | Structured version Visualization version GIF version | ||
| Description: Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| nfia1 | ⊢ Ⅎ𝑥(∀𝑥𝜑 → ∀𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜓 | |
| 3 | 1, 2 | nfim 1896 | 1 ⊢ Ⅎ𝑥(∀𝑥𝜑 → ∀𝑥𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2141 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: dfmoeu 2536 2eu6 2657 | 
| Copyright terms: Public domain | W3C validator |