MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfia1 Structured version   Visualization version   GIF version

Theorem nfia1 2152
Description: Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
nfia1 𝑥(∀𝑥𝜑 → ∀𝑥𝜓)

Proof of Theorem nfia1
StepHypRef Expression
1 nfa1 2150 . 2 𝑥𝑥𝜑
2 nfa1 2150 . 2 𝑥𝑥𝜓
31, 2nfim 1900 1 𝑥(∀𝑥𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-10 2139
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by:  dfmoeu  2536  2eu6  2658
  Copyright terms: Public domain W3C validator