Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfim | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 → 𝜓). Inference associated with nfimt 1898. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) df-nf 1787 changed. (Revised by Wolf Lammen, 17-Sep-2021.) |
Ref | Expression |
---|---|
nfim.1 | ⊢ Ⅎ𝑥𝜑 |
nfim.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfim.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | nfimt 1898 | . 2 ⊢ ((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜓) → Ⅎ𝑥(𝜑 → 𝜓)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Copyright terms: Public domain | W3C validator |