MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmoeu Structured version   Visualization version   GIF version

Theorem dfmoeu 2536
Description: An elementary proof of moeu 2583 in disguise, connecting an expression characterizing uniqueness (df-mo 2540) to that of existential uniqueness (eu6 2574). No particular order of definition is required, as one can be derived from the other. This is shown here and in dfeumo 2537. (Contributed by Wolf Lammen, 27-May-2019.)
Assertion
Ref Expression
dfmoeu ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfmoeu
StepHypRef Expression
1 alnex 1781 . . . . 5 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 pm2.21 123 . . . . . 6 𝜑 → (𝜑𝑥 = 𝑦))
32alimi 1811 . . . . 5 (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
41, 3sylbir 235 . . . 4 (¬ ∃𝑥𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
5419.8ad 2183 . . 3 (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
6 biimp 215 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
76alimi 1811 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
87eximi 1835 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
95, 8ja 186 . 2 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
10 nfia1 2154 . . . . 5 𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
11 id 22 . . . . . . . . 9 (𝜑𝜑)
12 ax12v 2179 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
1312com12 32 . . . . . . . . 9 (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦𝜑)))
1411, 13embantd 59 . . . . . . . 8 (𝜑 → ((𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
1514spsd 2188 . . . . . . 7 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
1615ancld 550 . . . . . 6 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑))))
17 albiim 1889 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
1816, 17imbitrrdi 252 . . . . 5 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
1910, 18exlimi 2218 . . . 4 (∃𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
2019eximdv 1917 . . 3 (∃𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
2120com12 32 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
229, 21impbii 209 1 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  dfeumo  2537  eu6  2574  dfmo  2596
  Copyright terms: Public domain W3C validator