MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmoeu Structured version   Visualization version   GIF version

Theorem dfmoeu 2529
Description: An elementary proof of moeu 2576 in disguise, connecting an expression characterizing uniqueness (df-mo 2533) to that of existential uniqueness (eu6 2567). No particular order of definition is required, as one can be derived from the other. This is shown here and in dfeumo 2530. (Contributed by Wolf Lammen, 27-May-2019.)
Assertion
Ref Expression
dfmoeu ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfmoeu
StepHypRef Expression
1 alnex 1782 . . . . 5 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 pm2.21 123 . . . . . 6 𝜑 → (𝜑𝑥 = 𝑦))
32alimi 1812 . . . . 5 (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
41, 3sylbir 234 . . . 4 (¬ ∃𝑥𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
5419.8ad 2174 . . 3 (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
6 biimp 214 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
76alimi 1812 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
87eximi 1836 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
95, 8ja 186 . 2 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
10 nfia1 2149 . . . . 5 𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
11 id 22 . . . . . . . . 9 (𝜑𝜑)
12 ax12v 2171 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
1312com12 32 . . . . . . . . 9 (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦𝜑)))
1411, 13embantd 59 . . . . . . . 8 (𝜑 → ((𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
1514spsd 2179 . . . . . . 7 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
1615ancld 550 . . . . . 6 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑))))
17 albiim 1891 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
1816, 17imbitrrdi 251 . . . . 5 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
1910, 18exlimi 2209 . . . 4 (∃𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
2019eximdv 1919 . . 3 (∃𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
2120com12 32 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
229, 21impbii 208 1 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1781  df-nf 1785
This theorem is referenced by:  dfeumo  2530  eu6  2567  dfmo  2589
  Copyright terms: Public domain W3C validator