MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmoeu Structured version   Visualization version   GIF version

Theorem dfmoeu 2537
Description: An elementary proof of moeu 2584 in disguise, connecting an expression characterizing uniqueness (df-mo 2541) to that of existential uniqueness (eu6 2575). No particular order of definition is required, as one can be derived from the other. This is shown here and in dfeumo 2538. (Contributed by Wolf Lammen, 27-May-2019.)
Assertion
Ref Expression
dfmoeu ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfmoeu
StepHypRef Expression
1 alnex 1787 . . . . 5 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 pm2.21 123 . . . . . 6 𝜑 → (𝜑𝑥 = 𝑦))
32alimi 1817 . . . . 5 (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
41, 3sylbir 234 . . . 4 (¬ ∃𝑥𝜑 → ∀𝑥(𝜑𝑥 = 𝑦))
5419.8ad 2178 . . 3 (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
6 biimp 214 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
76alimi 1817 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
87eximi 1840 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
95, 8ja 186 . 2 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
10 nfia1 2153 . . . . 5 𝑥(∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
11 id 22 . . . . . . . . 9 (𝜑𝜑)
12 ax12v 2175 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
1312com12 32 . . . . . . . . 9 (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦𝜑)))
1411, 13embantd 59 . . . . . . . 8 (𝜑 → ((𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
1514spsd 2183 . . . . . . 7 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑)))
1615ancld 550 . . . . . 6 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑))))
17 albiim 1895 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
1816, 17syl6ibr 251 . . . . 5 (𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
1910, 18exlimi 2213 . . . 4 (∃𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
2019eximdv 1923 . . 3 (∃𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
2120com12 32 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
229, 21impbii 208 1 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1539  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by:  dfeumo  2538  eu6  2575  dfmo  2597
  Copyright terms: Public domain W3C validator