Proof of Theorem dfmoeu
Step | Hyp | Ref
| Expression |
1 | | alnex 1787 |
. . . . 5
⊢
(∀𝑥 ¬
𝜑 ↔ ¬ ∃𝑥𝜑) |
2 | | pm2.21 123 |
. . . . . 6
⊢ (¬
𝜑 → (𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alimi 1817 |
. . . . 5
⊢
(∀𝑥 ¬
𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 1, 3 | sylbir 234 |
. . . 4
⊢ (¬
∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | 4 | 19.8ad 2178 |
. . 3
⊢ (¬
∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | | biimp 214 |
. . . . 5
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
7 | 6 | alimi 1817 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
8 | 7 | eximi 1840 |
. . 3
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
9 | 5, 8 | ja 186 |
. 2
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
10 | | nfia1 2153 |
. . . . 5
⊢
Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
11 | | id 22 |
. . . . . . . . 9
⊢ (𝜑 → 𝜑) |
12 | | ax12v 2175 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
13 | 12 | com12 32 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
14 | 11, 13 | embantd 59 |
. . . . . . . 8
⊢ (𝜑 → ((𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
15 | 14 | spsd 2183 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
16 | 15 | ancld 550 |
. . . . . 6
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
17 | | albiim 1895 |
. . . . . 6
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
18 | 16, 17 | syl6ibr 251 |
. . . . 5
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
19 | 10, 18 | exlimi 2213 |
. . . 4
⊢
(∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
20 | 19 | eximdv 1923 |
. . 3
⊢
(∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
21 | 20 | com12 32 |
. 2
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
22 | 9, 21 | impbii 208 |
1
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |