Proof of Theorem 2eu6
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2eu4 2655 | . 2
⊢
((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | 
| 2 |  | nfia1 2153 | . . . . . 6
⊢
Ⅎ𝑥(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 3 |  | nfa1 2151 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑦∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) | 
| 4 |  | nfv 1914 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝑥 = 𝑧 | 
| 5 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | 
| 6 | 5 | imim2i 16 | . . . . . . . . . . . . . 14
⊢ ((𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝜑 → 𝑥 = 𝑧)) | 
| 7 | 6 | sps 2185 | . . . . . . . . . . . . 13
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝜑 → 𝑥 = 𝑧)) | 
| 8 | 3, 4, 7 | exlimd 2218 | . . . . . . . . . . . 12
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∃𝑦𝜑 → 𝑥 = 𝑧)) | 
| 9 |  | ax12v 2178 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (∃𝑦𝜑 → ∀𝑥(𝑥 = 𝑧 → ∃𝑦𝜑))) | 
| 10 | 8, 9 | syli 39 | . . . . . . . . . . 11
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∃𝑦𝜑 → ∀𝑥(𝑥 = 𝑧 → ∃𝑦𝜑))) | 
| 11 | 10 | com12 32 | . . . . . . . . . 10
⊢
(∃𝑦𝜑 → (∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥(𝑥 = 𝑧 → ∃𝑦𝜑))) | 
| 12 | 11 | spsd 2187 | . . . . . . . . 9
⊢
(∃𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥(𝑥 = 𝑧 → ∃𝑦𝜑))) | 
| 13 |  | nfs1v 2156 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜑 | 
| 14 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | 
| 15 | 14 | imim2i 16 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝜑 → 𝑦 = 𝑤)) | 
| 16 |  | sbequ1 2248 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → (𝜑 → [𝑤 / 𝑦]𝜑)) | 
| 17 | 15, 16 | syli 39 | . . . . . . . . . . . . . 14
⊢ ((𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝜑 → [𝑤 / 𝑦]𝜑)) | 
| 18 | 17 | sps 2185 | . . . . . . . . . . . . 13
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝜑 → [𝑤 / 𝑦]𝜑)) | 
| 19 | 3, 13, 18 | exlimd 2218 | . . . . . . . . . . . 12
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∃𝑦𝜑 → [𝑤 / 𝑦]𝜑)) | 
| 20 | 19 | imim2d 57 | . . . . . . . . . . 11
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ((𝑥 = 𝑧 → ∃𝑦𝜑) → (𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑))) | 
| 21 | 20 | al2imi 1815 | . . . . . . . . . 10
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∀𝑥(𝑥 = 𝑧 → ∃𝑦𝜑) → ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑))) | 
| 22 |  | sb6 2085 | . . . . . . . . . . 11
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑)) | 
| 23 |  | 2sb6 2086 | . . . . . . . . . . 11
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 24 | 22, 23 | bitr3i 277 | . . . . . . . . . 10
⊢
(∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 25 | 21, 24 | imbitrdi 251 | . . . . . . . . 9
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∀𝑥(𝑥 = 𝑧 → ∃𝑦𝜑) → ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑))) | 
| 26 | 12, 25 | sylcom 30 | . . . . . . . 8
⊢
(∃𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑))) | 
| 27 | 26 | ancld 550 | . . . . . . 7
⊢
(∃𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)))) | 
| 28 |  | 2albiim 1890 | . . . . . . 7
⊢
(∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑))) | 
| 29 | 27, 28 | imbitrrdi 252 | . . . . . 6
⊢
(∃𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | 
| 30 | 2, 29 | exlimi 2217 | . . . . 5
⊢
(∃𝑥∃𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | 
| 31 | 30 | 2eximdv 1919 | . . . 4
⊢
(∃𝑥∃𝑦𝜑 → (∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | 
| 32 | 31 | imp 406 | . . 3
⊢
((∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 33 |  | biimpr 220 | . . . . . . 7
⊢ ((𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 34 | 33 | 2alimi 1812 | . . . . . 6
⊢
(∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 35 | 34 | 2eximi 1836 | . . . . 5
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 36 |  | 2exsb 2363 | . . . . 5
⊢
(∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 37 | 35, 36 | sylibr 234 | . . . 4
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∃𝑥∃𝑦𝜑) | 
| 38 |  | biimp 215 | . . . . . 6
⊢ ((𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 39 | 38 | 2alimi 1812 | . . . . 5
⊢
(∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 40 | 39 | 2eximi 1836 | . . . 4
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 41 | 37, 40 | jca 511 | . . 3
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | 
| 42 | 32, 41 | impbii 209 | . 2
⊢
((∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 43 | 1, 42 | bitri 275 | 1
⊢
((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |