MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noranOLD Structured version   Visualization version   GIF version

Theorem noranOLD 1529
Description: Obsolete version of noran 1528 as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
noranOLD ((𝜑𝜓) ↔ ((𝜑 𝜑) (𝜓 𝜓)))

Proof of Theorem noranOLD
StepHypRef Expression
1 ianor 978 . . . 4 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
21notbii 319 . . 3 (¬ ¬ (𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))
3 nornot 1526 . . . . 5 𝜑 ↔ (𝜑 𝜑))
4 nornot 1526 . . . . 5 𝜓 ↔ (𝜓 𝜓))
53, 4orbi12i 911 . . . 4 ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ((𝜑 𝜑) ∨ (𝜓 𝜓)))
65notbii 319 . . 3 (¬ (¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ ((𝜑 𝜑) ∨ (𝜓 𝜓)))
7 ioran 980 . . 3 (¬ ((𝜑 𝜑) ∨ (𝜓 𝜓)) ↔ (¬ (𝜑 𝜑) ∧ ¬ (𝜓 𝜓)))
82, 6, 73bitrri 297 . 2 ((¬ (𝜑 𝜑) ∧ ¬ (𝜓 𝜓)) ↔ ¬ ¬ (𝜑𝜓))
9 df-nor 1523 . . 3 (((𝜑 𝜑) (𝜓 𝜓)) ↔ ¬ ((𝜑 𝜑) ∨ (𝜓 𝜓)))
109, 7bitri 274 . 2 (((𝜑 𝜑) (𝜓 𝜓)) ↔ (¬ (𝜑 𝜑) ∧ ¬ (𝜓 𝜓)))
11 notnotb 314 . 2 ((𝜑𝜓) ↔ ¬ ¬ (𝜑𝜓))
128, 10, 113bitr4ri 303 1 ((𝜑𝜓) ↔ ((𝜑 𝜑) (𝜓 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843   wnor 1522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-nor 1523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator