Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > noranOLD | Structured version Visualization version GIF version |
Description: Obsolete version of noran 1528 as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
noranOLD | ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ⊽ 𝜑) ⊽ (𝜓 ⊽ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 978 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
2 | 1 | notbii 319 | . . 3 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)) |
3 | nornot 1526 | . . . . 5 ⊢ (¬ 𝜑 ↔ (𝜑 ⊽ 𝜑)) | |
4 | nornot 1526 | . . . . 5 ⊢ (¬ 𝜓 ↔ (𝜓 ⊽ 𝜓)) | |
5 | 3, 4 | orbi12i 911 | . . . 4 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ((𝜑 ⊽ 𝜑) ∨ (𝜓 ⊽ 𝜓))) |
6 | 5 | notbii 319 | . . 3 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ ((𝜑 ⊽ 𝜑) ∨ (𝜓 ⊽ 𝜓))) |
7 | ioran 980 | . . 3 ⊢ (¬ ((𝜑 ⊽ 𝜑) ∨ (𝜓 ⊽ 𝜓)) ↔ (¬ (𝜑 ⊽ 𝜑) ∧ ¬ (𝜓 ⊽ 𝜓))) | |
8 | 2, 6, 7 | 3bitrri 297 | . 2 ⊢ ((¬ (𝜑 ⊽ 𝜑) ∧ ¬ (𝜓 ⊽ 𝜓)) ↔ ¬ ¬ (𝜑 ∧ 𝜓)) |
9 | df-nor 1523 | . . 3 ⊢ (((𝜑 ⊽ 𝜑) ⊽ (𝜓 ⊽ 𝜓)) ↔ ¬ ((𝜑 ⊽ 𝜑) ∨ (𝜓 ⊽ 𝜓))) | |
10 | 9, 7 | bitri 274 | . 2 ⊢ (((𝜑 ⊽ 𝜑) ⊽ (𝜓 ⊽ 𝜓)) ↔ (¬ (𝜑 ⊽ 𝜑) ∧ ¬ (𝜓 ⊽ 𝜓))) |
11 | notnotb 314 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ ¬ (𝜑 ∧ 𝜓)) | |
12 | 8, 10, 11 | 3bitr4ri 303 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ⊽ 𝜑) ⊽ (𝜓 ⊽ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ⊽ wnor 1522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-nor 1523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |