Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrexralim | Structured version Visualization version GIF version |
Description: Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009.) |
Ref | Expression |
---|---|
nrexralim | ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexanali 3192 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) | |
2 | 1 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) |
3 | ralnex 3167 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) | |
4 | 2, 3 | bitr2i 275 | 1 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |