MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrexralim Structured version   Visualization version   GIF version

Theorem nrexralim 3193
Description: Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
nrexralim (¬ ∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑 ∧ ¬ 𝜓))

Proof of Theorem nrexralim
StepHypRef Expression
1 rexanali 3192 . . 3 (∃𝑦𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑦𝐵 (𝜑𝜓))
21ralbii 3092 . 2 (∀𝑥𝐴𝑦𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥𝐴 ¬ ∀𝑦𝐵 (𝜑𝜓))
3 ralnex 3167 . 2 (∀𝑥𝐴 ¬ ∀𝑦𝐵 (𝜑𝜓) ↔ ¬ ∃𝑥𝐴𝑦𝐵 (𝜑𝜓))
42, 3bitr2i 275 1 (¬ ∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴𝑦𝐵 (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator