|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nrexralim | Structured version Visualization version GIF version | ||
| Description: Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009.) | 
| Ref | Expression | 
|---|---|
| nrexralim | ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexanali 3102 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) | |
| 2 | 1 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) | 
| 3 | ralnex 3072 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr2i 276 | 1 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3061 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3062 df-rex 3071 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |