| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrexralim | Structured version Visualization version GIF version | ||
| Description: Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009.) |
| Ref | Expression |
|---|---|
| nrexralim | ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexanali 3090 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) | |
| 2 | 1 | ralbii 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) |
| 3 | ralnex 3061 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓)) | |
| 4 | 2, 3 | bitr2i 276 | 1 ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3050 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3051 df-rex 3060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |