MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-2 Structured version   Visualization version   GIF version

Theorem r19.26-2 3144
Description: Restricted quantifier version of 19.26-2 1870. Version of r19.26 3117 with two quantifiers. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
r19.26-2 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))

Proof of Theorem r19.26-2
StepHypRef Expression
1 r19.26 3117 . . 3 (∀𝑦𝐵 (𝜑𝜓) ↔ (∀𝑦𝐵 𝜑 ∧ ∀𝑦𝐵 𝜓))
21ralbii 3099 . 2 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (∀𝑦𝐵 𝜑 ∧ ∀𝑦𝐵 𝜓))
3 r19.26 3117 . 2 (∀𝑥𝐴 (∀𝑦𝐵 𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))
42, 3bitri 275 1 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3068
This theorem is referenced by:  fununi  6653  tz7.48lem  8497  isffth2  17983  ispos2  18385  issgrpv  18759  issgrpn0  18760  isnsg2  19196  efgred  19790  isrnghm  20467  dfrhm2  20500  df2idl2rng  21289  cpmatacl  22743  cpmatmcllem  22745  caucfil  25336  aalioulem6  26397  ajmoi  30890  adjmo  31864  prmidl2  33434  iccllysconn  35218  dfso3  35682  fvineqsnf1  37376  ispridl2  37998  ishlat2  39309  fiinfi  43535  ntrk1k3eqk13  44012
  Copyright terms: Public domain W3C validator