| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26-2 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26-2 1872. Version of r19.26 3092 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| r19.26-2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3092 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) | |
| 2 | 1 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) |
| 3 | r19.26 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: fununi 6551 tz7.48lem 8355 isffth2 17820 ispos2 18216 issgrpv 18624 issgrpn0 18625 isnsg2 19063 efgred 19655 isrnghm 20354 dfrhm2 20387 df2idl2rng 21188 cpmatacl 22626 cpmatmcllem 22628 caucfil 25205 aalioulem6 26267 ajmoi 30830 adjmo 31804 prmidl2 33398 iccllysconn 35286 dfso3 35756 fvineqsnf1 37444 ispridl2 38078 ishlat2 39392 fiinfi 43606 ntrk1k3eqk13 44083 |
| Copyright terms: Public domain | W3C validator |