![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26-2 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26-2 1866. Version of r19.26 3108 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
r19.26-2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3108 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) | |
2 | 1 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) |
3 | r19.26 3108 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ral 3059 |
This theorem is referenced by: fununi 6633 tz7.48lem 8470 isffth2 17914 ispos2 18316 issgrpv 18690 issgrpn0 18691 isnsg2 19125 efgred 19717 isrnghm 20394 dfrhm2 20427 df2idl2rng 21164 cpmatacl 22646 cpmatmcllem 22648 caucfil 25239 aalioulem6 26300 ajmoi 30696 adjmo 31670 prmidl2 33190 iccllysconn 34901 dfso3 35355 fvineqsnf1 36930 ispridl2 37552 ishlat2 38865 fiinfi 43052 ntrk1k3eqk13 43529 |
Copyright terms: Public domain | W3C validator |