| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26-2 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26-2 1871. Version of r19.26 3092 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| r19.26-2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3092 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) | |
| 2 | 1 | ralbii 3076 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) |
| 3 | r19.26 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 |
| This theorem is referenced by: fununi 6594 tz7.48lem 8412 isffth2 17887 ispos2 18283 issgrpv 18655 issgrpn0 18656 isnsg2 19095 efgred 19685 isrnghm 20357 dfrhm2 20390 df2idl2rng 21173 cpmatacl 22610 cpmatmcllem 22612 caucfil 25190 aalioulem6 26252 ajmoi 30794 adjmo 31768 prmidl2 33419 iccllysconn 35244 dfso3 35714 fvineqsnf1 37405 ispridl2 38039 ishlat2 39353 fiinfi 43569 ntrk1k3eqk13 44046 |
| Copyright terms: Public domain | W3C validator |