MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-2 Structured version   Visualization version   GIF version

Theorem r19.26-2 3118
Description: Restricted quantifier version of 19.26-2 1871. Version of r19.26 3091 with two quantifiers. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
r19.26-2 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))

Proof of Theorem r19.26-2
StepHypRef Expression
1 r19.26 3091 . . 3 (∀𝑦𝐵 (𝜑𝜓) ↔ (∀𝑦𝐵 𝜑 ∧ ∀𝑦𝐵 𝜓))
21ralbii 3075 . 2 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (∀𝑦𝐵 𝜑 ∧ ∀𝑦𝐵 𝜓))
3 r19.26 3091 . 2 (∀𝑥𝐴 (∀𝑦𝐵 𝜑 ∧ ∀𝑦𝐵 𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))
42, 3bitri 275 1 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3045
This theorem is referenced by:  fununi  6591  tz7.48lem  8409  isffth2  17880  ispos2  18276  issgrpv  18648  issgrpn0  18649  isnsg2  19088  efgred  19678  isrnghm  20350  dfrhm2  20383  df2idl2rng  21166  cpmatacl  22603  cpmatmcllem  22605  caucfil  25183  aalioulem6  26245  ajmoi  30787  adjmo  31761  prmidl2  33412  iccllysconn  35237  dfso3  35707  fvineqsnf1  37398  ispridl2  38032  ishlat2  39346  fiinfi  43562  ntrk1k3eqk13  44039
  Copyright terms: Public domain W3C validator