Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.26-2 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26-2 1872. Version of r19.26 3101 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
r19.26-2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3101 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) | |
2 | 1 | ralbii 3097 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) |
3 | r19.26 3101 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | |
4 | 2, 3 | bitri 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ral 3075 |
This theorem is referenced by: fununi 6410 tz7.48lem 8087 isffth2 17245 ispos2 17624 issgrpv 17969 issgrpn0 17970 isnsg2 18375 efgred 18941 dfrhm2 19540 cpmatacl 21416 cpmatmcllem 21418 caucfil 23983 aalioulem6 25032 ajmoi 28740 adjmo 29714 prmidl2 31137 iccllysconn 32728 dfso3 33182 fvineqsnf1 35107 ispridl2 35756 ishlat2 36929 fiinfi 40645 ntrk1k3eqk13 41126 isrnghm 44883 |
Copyright terms: Public domain | W3C validator |