| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26-2 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26-2 1871. Version of r19.26 3091 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| r19.26-2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3091 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) |
| 3 | r19.26 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: fununi 6575 tz7.48lem 8386 isffth2 17856 ispos2 18252 issgrpv 18624 issgrpn0 18625 isnsg2 19064 efgred 19654 isrnghm 20326 dfrhm2 20359 df2idl2rng 21142 cpmatacl 22579 cpmatmcllem 22581 caucfil 25159 aalioulem6 26221 ajmoi 30760 adjmo 31734 prmidl2 33385 iccllysconn 35210 dfso3 35680 fvineqsnf1 37371 ispridl2 38005 ishlat2 39319 fiinfi 43535 ntrk1k3eqk13 44012 |
| Copyright terms: Public domain | W3C validator |