MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanali Structured version   Visualization version   GIF version

Theorem rexanali 3108
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.)
Assertion
Ref Expression
rexanali (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem rexanali
StepHypRef Expression
1 dfrex2 3079 . 2 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
2 iman 401 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
32ralbii 3099 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
41, 3xchbinxr 335 1 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by:  nrexralim  3143  ceqsralbv  3670  frpoind  6374  wfiOLD  6383  frind  9819  qsqueeze  13263  ncoprmgcdne1b  16697  elcls  23102  ist1-2  23376  haust1  23381  t1sep  23399  bwth  23439  1stccnp  23491  filufint  23949  fclscf  24054  pmltpc  25504  ovolgelb  25534  itg2seq  25797  radcnvlt1  26479  pntlem3  27671  nosupbnd1lem5  27775  noinfbnd1lem5  27790  umgr2edg1  29246  umgr2edgneu  29249  archiabl  33178  ordtconnlem1  33870  limsucncmpi  36411  matunitlindflem1  37576  ftc1anclem5  37657  clsk3nimkb  44002
  Copyright terms: Public domain W3C validator