| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3059 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | iman 401 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 3 | 2 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
| 4 | 1, 3 | xchbinxr 335 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: nrexralim 3116 ceqsralbv 3607 frpoind 6284 frind 9638 qsqueeze 13095 ncoprmgcdne1b 16556 elcls 22983 ist1-2 23257 haust1 23262 t1sep 23280 bwth 23320 1stccnp 23372 filufint 23830 fclscf 23935 pmltpc 25373 ovolgelb 25403 itg2seq 25665 radcnvlt1 26349 pntlem3 27542 nosupbnd1lem5 27646 noinfbnd1lem5 27661 onscutlt 28196 umgr2edg1 29184 umgr2edgneu 29187 archiabl 33159 extdgfialglem1 33697 ordtconnlem1 33929 limsucncmpi 36479 matunitlindflem1 37656 ftc1anclem5 37737 clsk3nimkb 44073 |
| Copyright terms: Public domain | W3C validator |