![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version |
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
Ref | Expression |
---|---|
rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3079 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
2 | iman 401 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
3 | 2 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
4 | 1, 3 | xchbinxr 335 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: nrexralim 3143 ceqsralbv 3670 frpoind 6374 wfiOLD 6383 frind 9819 qsqueeze 13263 ncoprmgcdne1b 16697 elcls 23102 ist1-2 23376 haust1 23381 t1sep 23399 bwth 23439 1stccnp 23491 filufint 23949 fclscf 24054 pmltpc 25504 ovolgelb 25534 itg2seq 25797 radcnvlt1 26479 pntlem3 27671 nosupbnd1lem5 27775 noinfbnd1lem5 27790 umgr2edg1 29246 umgr2edgneu 29249 archiabl 33178 ordtconnlem1 33870 limsucncmpi 36411 matunitlindflem1 37576 ftc1anclem5 37657 clsk3nimkb 44002 |
Copyright terms: Public domain | W3C validator |