MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanali Structured version   Visualization version   GIF version

Theorem rexanali 3092
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.)
Assertion
Ref Expression
rexanali (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem rexanali
StepHypRef Expression
1 dfrex2 3064 . 2 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
2 iman 401 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
32ralbii 3083 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
41, 3xchbinxr 335 1 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wral 3052  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3053  df-rex 3062
This theorem is referenced by:  nrexralim  3125  ceqsralbv  3641  frpoind  6336  wfiOLD  6345  frind  9769  qsqueeze  13222  ncoprmgcdne1b  16674  elcls  23016  ist1-2  23290  haust1  23295  t1sep  23313  bwth  23353  1stccnp  23405  filufint  23863  fclscf  23968  pmltpc  25408  ovolgelb  25438  itg2seq  25700  radcnvlt1  26384  pntlem3  27577  nosupbnd1lem5  27681  noinfbnd1lem5  27696  onscutlt  28222  umgr2edg1  29195  umgr2edgneu  29198  archiabl  33201  ordtconnlem1  33960  limsucncmpi  36468  matunitlindflem1  37645  ftc1anclem5  37726  clsk3nimkb  44031
  Copyright terms: Public domain W3C validator