MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanali Structured version   Visualization version   GIF version

Theorem rexanali 3191
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.)
Assertion
Ref Expression
rexanali (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem rexanali
StepHypRef Expression
1 dfrex2 3166 . 2 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
2 iman 401 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
32ralbii 3090 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
41, 3xchbinxr 334 1 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by:  nrexralim  3192  frpoind  6230  wfiOLD  6239  frind  9439  qsqueeze  12864  ncoprmgcdne1b  16283  elcls  22132  ist1-2  22406  haust1  22411  t1sep  22429  bwth  22469  1stccnp  22521  filufint  22979  fclscf  23084  pmltpc  24519  ovolgelb  24549  itg2seq  24812  radcnvlt1  25482  pntlem3  26662  umgr2edg1  27481  umgr2edgneu  27484  archiabl  31354  ordtconnlem1  31776  ceqsralv2  33572  nosupbnd1lem5  33842  noinfbnd1lem5  33857  limsucncmpi  34561  matunitlindflem1  35700  ftc1anclem5  35781  clsk3nimkb  41539
  Copyright terms: Public domain W3C validator