| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3060 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | iman 401 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 3 | 2 | ralbii 3079 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
| 4 | 1, 3 | xchbinxr 335 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: nrexralim 3117 ceqsralbv 3608 frpoind 6297 frind 9654 qsqueeze 13107 ncoprmgcdne1b 16568 elcls 23008 ist1-2 23282 haust1 23287 t1sep 23305 bwth 23345 1stccnp 23397 filufint 23855 fclscf 23960 pmltpc 25398 ovolgelb 25428 itg2seq 25690 radcnvlt1 26374 pntlem3 27567 nosupbnd1lem5 27671 noinfbnd1lem5 27686 onscutlt 28221 umgr2edg1 29210 umgr2edgneu 29213 archiabl 33208 extdgfialglem1 33777 ordtconnlem1 34009 limsucncmpi 36561 matunitlindflem1 37729 ftc1anclem5 37810 clsk3nimkb 44197 |
| Copyright terms: Public domain | W3C validator |