| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | iman 401 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 3 | 2 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
| 4 | 1, 3 | xchbinxr 335 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: nrexralim 3113 ceqsralbv 3614 frpoind 6294 frind 9665 qsqueeze 13121 ncoprmgcdne1b 16579 elcls 22976 ist1-2 23250 haust1 23255 t1sep 23273 bwth 23313 1stccnp 23365 filufint 23823 fclscf 23928 pmltpc 25367 ovolgelb 25397 itg2seq 25659 radcnvlt1 26343 pntlem3 27536 nosupbnd1lem5 27640 noinfbnd1lem5 27655 onscutlt 28188 umgr2edg1 29174 umgr2edgneu 29177 archiabl 33153 ordtconnlem1 33893 limsucncmpi 36421 matunitlindflem1 37598 ftc1anclem5 37679 clsk3nimkb 44016 |
| Copyright terms: Public domain | W3C validator |