| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | iman 401 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 3 | 2 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
| 4 | 1, 3 | xchbinxr 335 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: nrexralim 3117 ceqsralbv 3623 frpoind 6315 frind 9703 qsqueeze 13161 ncoprmgcdne1b 16620 elcls 22960 ist1-2 23234 haust1 23239 t1sep 23257 bwth 23297 1stccnp 23349 filufint 23807 fclscf 23912 pmltpc 25351 ovolgelb 25381 itg2seq 25643 radcnvlt1 26327 pntlem3 27520 nosupbnd1lem5 27624 noinfbnd1lem5 27639 onscutlt 28165 umgr2edg1 29138 umgr2edgneu 29141 archiabl 33152 ordtconnlem1 33914 limsucncmpi 36433 matunitlindflem1 37610 ftc1anclem5 37691 clsk3nimkb 44029 |
| Copyright terms: Public domain | W3C validator |