| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | iman 401 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 3 | 2 | ralbii 3076 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
| 4 | 1, 3 | xchbinxr 335 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: nrexralim 3118 ceqsralbv 3626 frpoind 6318 frind 9710 qsqueeze 13168 ncoprmgcdne1b 16627 elcls 22967 ist1-2 23241 haust1 23246 t1sep 23264 bwth 23304 1stccnp 23356 filufint 23814 fclscf 23919 pmltpc 25358 ovolgelb 25388 itg2seq 25650 radcnvlt1 26334 pntlem3 27527 nosupbnd1lem5 27631 noinfbnd1lem5 27646 onscutlt 28172 umgr2edg1 29145 umgr2edgneu 29148 archiabl 33159 ordtconnlem1 33921 limsucncmpi 36440 matunitlindflem1 37617 ftc1anclem5 37698 clsk3nimkb 44036 |
| Copyright terms: Public domain | W3C validator |