MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanali Structured version   Visualization version   GIF version

Theorem rexanali 3086
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.)
Assertion
Ref Expression
rexanali (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem rexanali
StepHypRef Expression
1 dfrex2 3059 . 2 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
2 iman 401 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
32ralbii 3078 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
41, 3xchbinxr 335 1 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wral 3047  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-ral 3048  df-rex 3057
This theorem is referenced by:  nrexralim  3116  ceqsralbv  3607  frpoind  6284  frind  9638  qsqueeze  13095  ncoprmgcdne1b  16556  elcls  22983  ist1-2  23257  haust1  23262  t1sep  23280  bwth  23320  1stccnp  23372  filufint  23830  fclscf  23935  pmltpc  25373  ovolgelb  25403  itg2seq  25665  radcnvlt1  26349  pntlem3  27542  nosupbnd1lem5  27646  noinfbnd1lem5  27661  onscutlt  28196  umgr2edg1  29184  umgr2edgneu  29187  archiabl  33159  extdgfialglem1  33697  ordtconnlem1  33929  limsucncmpi  36479  matunitlindflem1  37656  ftc1anclem5  37737  clsk3nimkb  44073
  Copyright terms: Public domain W3C validator