MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexnal3 Structured version   Visualization version   GIF version

Theorem rexnal3 3188
Description: Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
rexnal3 (∃𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑)

Proof of Theorem rexnal3
StepHypRef Expression
1 rexnal 3169 . . 3 (∃𝑧𝐶 ¬ 𝜑 ↔ ¬ ∀𝑧𝐶 𝜑)
212rexbii 3182 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 ¬ ∀𝑧𝐶 𝜑)
3 rexnal2 3187 . 2 (∃𝑥𝐴𝑦𝐵 ¬ ∀𝑧𝐶 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑)
42, 3bitri 274 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by:  tgdim01  26868
  Copyright terms: Public domain W3C validator