| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrexrmo | Structured version Visualization version GIF version | ||
| Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| nrexrmo | ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo5 3384 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wrex 3061 ∃!wreu 3362 ∃*wrmo 3363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-rex 3062 df-rmo 3364 df-reu 3365 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |