MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrexrmo Structured version   Visualization version   GIF version

Theorem nrexrmo 3400
Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
nrexrmo (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem nrexrmo
StepHypRef Expression
1 pm2.21 123 . 2 (¬ ∃𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
2 rmo5 3399 . 2 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
31, 2sylibr 234 1 (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wrex 3069  ∃!wreu 3377  ∃*wrmo 3378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2539  df-eu 2568  df-rex 3070  df-rmo 3379  df-reu 3380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator