|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nrexrmo | Structured version Visualization version GIF version | ||
| Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| nrexrmo | ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.21 123 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo5 3399 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∃wrex 3069 ∃!wreu 3377 ∃*wrmo 3378 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-eu 2568 df-rex 3070 df-rmo 3379 df-reu 3380 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |