MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo5 Structured version   Visualization version   GIF version

Theorem rmo5 3364
Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmo5 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))

Proof of Theorem rmo5
StepHypRef Expression
1 moeu 2578 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
2 df-rmo 3346 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
3 df-rex 3057 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-reu 3347 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
53, 4imbi12i 350 . 2 ((∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 303 1 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2111  ∃*wmo 2533  ∃!weu 2563  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-eu 2564  df-rex 3057  df-rmo 3346  df-reu 3347
This theorem is referenced by:  nrexrmo  3365  cbvrmo  3388  2reurex  3714  rmo0  4307  rmosn  4667  ddemeas  34241  iccpartdisj  47468
  Copyright terms: Public domain W3C validator