![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmo5 | Structured version Visualization version GIF version |
Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmo5 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu 2581 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-rmo 3378 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-reu 3379 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | imbi12i 350 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 ∃*wmo 2536 ∃!weu 2566 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-eu 2567 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: nrexrmo 3399 cbvrmo 3426 2reurex 3769 rmo0 4368 rmosn 4724 ddemeas 34217 iccpartdisj 47362 |
Copyright terms: Public domain | W3C validator |