MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo5 Structured version   Visualization version   GIF version

Theorem rmo5 3365
Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmo5 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))

Proof of Theorem rmo5
StepHypRef Expression
1 moeu 2583 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
2 df-rmo 3071 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
3 df-rex 3070 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-reu 3072 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
53, 4imbi12i 351 . 2 ((∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 303 1 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782  wcel 2106  ∃*wmo 2538  ∃!weu 2568  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-mo 2540  df-eu 2569  df-rex 3070  df-rmo 3071  df-reu 3072
This theorem is referenced by:  nrexrmo  3366  cbvrmowOLD  3378  cbvrmo  3382  2reurex  3695  rmo0  4293  rmosn  4655  ddemeas  32204  iccpartdisj  44889
  Copyright terms: Public domain W3C validator