Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo5 Structured version   Visualization version   GIF version

Theorem rmo5 3418
 Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmo5 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))

Proof of Theorem rmo5
StepHypRef Expression
1 moeu 2669 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
2 df-rmo 3141 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
3 df-rex 3139 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-reu 3140 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
53, 4imbi12i 354 . 2 ((∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 306 1 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∃wex 1781   ∈ wcel 2115  ∃*wmo 2622  ∃!weu 2654  ∃wrex 3134  ∃!wreu 3135  ∃*wrmo 3136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-mo 2624  df-eu 2655  df-rex 3139  df-reu 3140  df-rmo 3141 This theorem is referenced by:  nrexrmo  3419  cbvrmowOLD  3430  cbvrmo  3434  2reurex  3736  rmo0  4301  rmosn  4639  ddemeas  31520  iccpartdisj  43817
 Copyright terms: Public domain W3C validator