MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moel Structured version   Visualization version   GIF version

Theorem moel 3366
Description: "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018.) Avoid ax-11 2160. (Revised by Wolf Lammen, 23-Nov-2024.)
Assertion
Ref Expression
moel (∃*𝑥 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem moel
StepHypRef Expression
1 eleq1w 2814 . . 3 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21mo4 2561 . 2 (∃*𝑥 𝑥𝐴 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
3 r2al 3168 . 2 (∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
42, 3bitr4i 278 1 (∃*𝑥 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2111  ∃*wmo 2533  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-clel 2806  df-ral 3048
This theorem is referenced by:  disjnf  32548  oppcmndclem  49055  isthinc3  49459  isthincd2lem1  49463  termcbasmo  49521  arweuthinc  49567  arweutermc  49568  funcsn  49579  0fucterm  49581  mndtcbas2  49621
  Copyright terms: Public domain W3C validator