| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moel | Structured version Visualization version GIF version | ||
| Description: "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018.) Avoid ax-11 2158. (Revised by Wolf Lammen, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| moel | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2818 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | 1 | mo4 2566 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) |
| 3 | r2al 3181 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∃*wmo 2538 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-clel 2810 df-ral 3053 |
| This theorem is referenced by: disjnf 32556 oppcmndclem 48959 isthinc3 49274 isthincd2lem1 49278 termcbasmo 49335 arweuthinc 49381 arweutermc 49382 mndtcbas2 49427 |
| Copyright terms: Public domain | W3C validator |