Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepon Structured version   Visualization version   GIF version

Theorem nosepon 33795
Description: Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
nosepon ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepon
StepHypRef Expression
1 df-ne 2943 . . . . . . . 8 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
21rexbii 3177 . . . . . . 7 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
32notbii 319 . . . . . 6 (¬ ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
4 dfral2 3164 . . . . . 6 (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
53, 4bitr4i 277 . . . . 5 (¬ ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
6 nodmord 33783 . . . . . . . . . . . . 13 (𝐴 No → Ord dom 𝐴)
7 nodmord 33783 . . . . . . . . . . . . 13 (𝐵 No → Ord dom 𝐵)
8 ordtri3or 6283 . . . . . . . . . . . . 13 ((Ord dom 𝐴 ∧ Ord dom 𝐵) → (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴))
96, 7, 8syl2an 595 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴))
10 3orass 1088 . . . . . . . . . . . . 13 ((dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴) ↔ (dom 𝐴 ∈ dom 𝐵 ∨ (dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
11 or12 917 . . . . . . . . . . . . 13 ((dom 𝐴 ∈ dom 𝐵 ∨ (dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)) ↔ (dom 𝐴 = dom 𝐵 ∨ (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
1210, 11bitri 274 . . . . . . . . . . . 12 ((dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴) ↔ (dom 𝐴 = dom 𝐵 ∨ (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
139, 12sylib 217 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (dom 𝐴 = dom 𝐵 ∨ (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
1413ord 860 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → (¬ dom 𝐴 = dom 𝐵 → (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
15 noseponlem 33794 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
16153expia 1119 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (dom 𝐴 ∈ dom 𝐵 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
17 noseponlem 33794 . . . . . . . . . . . . . 14 ((𝐵 No 𝐴 No ∧ dom 𝐵 ∈ dom 𝐴) → ¬ ∀𝑥 ∈ On (𝐵𝑥) = (𝐴𝑥))
18 eqcom 2745 . . . . . . . . . . . . . . 15 ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐵𝑥) = (𝐴𝑥))
1918ralbii 3090 . . . . . . . . . . . . . 14 (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐴𝑥))
2017, 19sylnibr 328 . . . . . . . . . . . . 13 ((𝐵 No 𝐴 No ∧ dom 𝐵 ∈ dom 𝐴) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
21203expia 1119 . . . . . . . . . . . 12 ((𝐵 No 𝐴 No ) → (dom 𝐵 ∈ dom 𝐴 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2221ancoms 458 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (dom 𝐵 ∈ dom 𝐴 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2316, 22jaod 855 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → ((dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2414, 23syld 47 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → (¬ dom 𝐴 = dom 𝐵 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2524con4d 115 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → dom 𝐴 = dom 𝐵))
26253impia 1115 . . . . . . 7 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → dom 𝐴 = dom 𝐵)
27 ordsson 7610 . . . . . . . . . 10 (Ord dom 𝐴 → dom 𝐴 ⊆ On)
28 ssralv 3983 . . . . . . . . . 10 (dom 𝐴 ⊆ On → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
296, 27, 283syl 18 . . . . . . . . 9 (𝐴 No → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
3029adantr 480 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
31303impia 1115 . . . . . . 7 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))
32 nofun 33779 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
33323ad2ant1 1131 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐴)
34 nofun 33779 . . . . . . . . 9 (𝐵 No → Fun 𝐵)
35343ad2ant2 1132 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐵)
36 eqfunfv 6896 . . . . . . . 8 ((Fun 𝐴 ∧ Fun 𝐵) → (𝐴 = 𝐵 ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
3733, 35, 36syl2anc 583 . . . . . . 7 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → (𝐴 = 𝐵 ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
3826, 31, 37mpbir2and 709 . . . . . 6 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → 𝐴 = 𝐵)
39383expia 1119 . . . . 5 ((𝐴 No 𝐵 No ) → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → 𝐴 = 𝐵))
405, 39syl5bi 241 . . . 4 ((𝐴 No 𝐵 No ) → (¬ ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) → 𝐴 = 𝐵))
4140necon1ad 2959 . . 3 ((𝐴 No 𝐵 No ) → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥)))
42413impia 1115 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
43 onintrab2 7624 . 2 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
4442, 43sylib 217 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883   cint 4876  dom cdm 5580  Ord word 6250  Oncon0 6251  Fun wfun 6412  cfv 6418   No csur 33770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-2o 8268  df-no 33773
This theorem is referenced by:  nosepeq  33815  nosepssdm  33816  nodenselem4  33817  noresle  33827  nosupbnd2lem1  33845  noinfbnd2lem1  33860  noetasuplem4  33866  noetainflem4  33870
  Copyright terms: Public domain W3C validator