MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosepon Structured version   Visualization version   GIF version

Theorem nosepon 27165
Description: Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
nosepon ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepon
StepHypRef Expression
1 df-ne 2941 . . . . . . . 8 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
21rexbii 3094 . . . . . . 7 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
32notbii 319 . . . . . 6 (¬ ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
4 dfral2 3099 . . . . . 6 (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
53, 4bitr4i 277 . . . . 5 (¬ ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
6 nodmord 27153 . . . . . . . . . . . . 13 (𝐴 No → Ord dom 𝐴)
7 nodmord 27153 . . . . . . . . . . . . 13 (𝐵 No → Ord dom 𝐵)
8 ordtri3or 6396 . . . . . . . . . . . . 13 ((Ord dom 𝐴 ∧ Ord dom 𝐵) → (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴))
96, 7, 8syl2an 596 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴))
10 3orass 1090 . . . . . . . . . . . . 13 ((dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴) ↔ (dom 𝐴 ∈ dom 𝐵 ∨ (dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
11 or12 919 . . . . . . . . . . . . 13 ((dom 𝐴 ∈ dom 𝐵 ∨ (dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)) ↔ (dom 𝐴 = dom 𝐵 ∨ (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
1210, 11bitri 274 . . . . . . . . . . . 12 ((dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐴 = dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴) ↔ (dom 𝐴 = dom 𝐵 ∨ (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
139, 12sylib 217 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (dom 𝐴 = dom 𝐵 ∨ (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
1413ord 862 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → (¬ dom 𝐴 = dom 𝐵 → (dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴)))
15 noseponlem 27164 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
16153expia 1121 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (dom 𝐴 ∈ dom 𝐵 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
17 noseponlem 27164 . . . . . . . . . . . . . 14 ((𝐵 No 𝐴 No ∧ dom 𝐵 ∈ dom 𝐴) → ¬ ∀𝑥 ∈ On (𝐵𝑥) = (𝐴𝑥))
18 eqcom 2739 . . . . . . . . . . . . . . 15 ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐵𝑥) = (𝐴𝑥))
1918ralbii 3093 . . . . . . . . . . . . . 14 (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐴𝑥))
2017, 19sylnibr 328 . . . . . . . . . . . . 13 ((𝐵 No 𝐴 No ∧ dom 𝐵 ∈ dom 𝐴) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
21203expia 1121 . . . . . . . . . . . 12 ((𝐵 No 𝐴 No ) → (dom 𝐵 ∈ dom 𝐴 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2221ancoms 459 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (dom 𝐵 ∈ dom 𝐴 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2316, 22jaod 857 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → ((dom 𝐴 ∈ dom 𝐵 ∨ dom 𝐵 ∈ dom 𝐴) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2414, 23syld 47 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → (¬ dom 𝐴 = dom 𝐵 → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)))
2524con4d 115 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → dom 𝐴 = dom 𝐵))
26253impia 1117 . . . . . . 7 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → dom 𝐴 = dom 𝐵)
27 ordsson 7769 . . . . . . . . . 10 (Ord dom 𝐴 → dom 𝐴 ⊆ On)
28 ssralv 4050 . . . . . . . . . 10 (dom 𝐴 ⊆ On → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
296, 27, 283syl 18 . . . . . . . . 9 (𝐴 No → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
3029adantr 481 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥)))
31303impia 1117 . . . . . . 7 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))
32 nofun 27149 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
33323ad2ant1 1133 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐴)
34 nofun 27149 . . . . . . . . 9 (𝐵 No → Fun 𝐵)
35343ad2ant2 1134 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐵)
36 eqfunfv 7037 . . . . . . . 8 ((Fun 𝐴 ∧ Fun 𝐵) → (𝐴 = 𝐵 ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
3733, 35, 36syl2anc 584 . . . . . . 7 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → (𝐴 = 𝐵 ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐴(𝐴𝑥) = (𝐵𝑥))))
3826, 31, 37mpbir2and 711 . . . . . 6 ((𝐴 No 𝐵 No ∧ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥)) → 𝐴 = 𝐵)
39383expia 1121 . . . . 5 ((𝐴 No 𝐵 No ) → (∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥) → 𝐴 = 𝐵))
405, 39biimtrid 241 . . . 4 ((𝐴 No 𝐵 No ) → (¬ ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) → 𝐴 = 𝐵))
4140necon1ad 2957 . . 3 ((𝐴 No 𝐵 No ) → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥)))
42413impia 1117 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
43 onintrab2 7784 . 2 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
4442, 43sylib 217 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  wss 3948   cint 4950  dom cdm 5676  Ord word 6363  Oncon0 6364  Fun wfun 6537  cfv 6543   No csur 27140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1o 8465  df-2o 8466  df-no 27143
This theorem is referenced by:  nosepeq  27185  nosepssdm  27186  nodenselem4  27187  noresle  27197  nosupbnd2lem1  27215  noinfbnd2lem1  27230  noetasuplem4  27236  noetainflem4  27240
  Copyright terms: Public domain W3C validator