| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordzsl | Structured version Visualization version GIF version | ||
| Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of [Schloeder] p. 2. (Contributed by NM, 1-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordzsl | ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduninsuc 7822 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
| 2 | 1 | biimprd 248 | . . . . 5 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 = ∪ 𝐴)) |
| 3 | unizlim 6460 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) | |
| 4 | 2, 3 | sylibd 239 | . . . 4 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴))) |
| 5 | 4 | orrd 863 | . . 3 ⊢ (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
| 6 | 3orass 1089 | . . . 4 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))) | |
| 7 | or12 920 | . . . 4 ⊢ ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
| 9 | 5, 8 | sylibr 234 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
| 10 | ord0 6389 | . . . 4 ⊢ Ord ∅ | |
| 11 | ordeq 6342 | . . . 4 ⊢ (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅)) | |
| 12 | 10, 11 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → Ord 𝐴) |
| 13 | onsuc 7790 | . . . . . 6 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 14 | eleq1 2817 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) | |
| 15 | 13, 14 | imbitrrid 246 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On)) |
| 16 | eloni 6345 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 17 | 15, 16 | syl6com 37 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴)) |
| 18 | 17 | rexlimiv 3128 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴) |
| 19 | limord 6396 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 20 | 12, 18, 19 | 3jaoi 1430 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴) |
| 21 | 9, 20 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∅c0 4299 ∪ cuni 4874 Ord word 6334 Oncon0 6335 Lim wlim 6336 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 |
| This theorem is referenced by: onzsl 7825 tfrlem16 8364 omeulem1 8549 oaabs2 8616 rankxplim3 9841 rankxpsuc 9842 cardlim 9932 cardaleph 10049 cflim2 10223 dfrdg2 35790 |
| Copyright terms: Public domain | W3C validator |