MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordzsl Structured version   Visualization version   GIF version

Theorem ordzsl 7692
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
ordzsl (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ordzsl
StepHypRef Expression
1 orduninsuc 7690 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
21biimprd 247 . . . . 5 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥𝐴 = 𝐴))
3 unizlim 6383 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
42, 3sylibd 238 . . . 4 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴)))
54orrd 860 . . 3 (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
6 3orass 1089 . . . 4 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)))
7 or12 918 . . . 4 ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
86, 7bitri 274 . . 3 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
95, 8sylibr 233 . 2 (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
10 ord0 6318 . . . 4 Ord ∅
11 ordeq 6273 . . . 4 (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅))
1210, 11mpbiri 257 . . 3 (𝐴 = ∅ → Ord 𝐴)
13 suceloni 7659 . . . . . 6 (𝑥 ∈ On → suc 𝑥 ∈ On)
14 eleq1 2826 . . . . . 6 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
1513, 14syl5ibr 245 . . . . 5 (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On))
16 eloni 6276 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
1715, 16syl6com 37 . . . 4 (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴))
1817rexlimiv 3209 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴)
19 limord 6325 . . 3 (Lim 𝐴 → Ord 𝐴)
2012, 18, 193jaoi 1426 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴)
219, 20impbii 208 1 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844  w3o 1085   = wceq 1539  wcel 2106  wrex 3065  c0 4256   cuni 4839  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272
This theorem is referenced by:  onzsl  7693  tfrlem16  8224  omeulem1  8413  oaabs2  8479  rankxplim3  9639  rankxpsuc  9640  cardlim  9730  cardaleph  9845  cflim2  10019  dfrdg2  33771
  Copyright terms: Public domain W3C validator