Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordzsl | Structured version Visualization version GIF version |
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
Ref | Expression |
---|---|
ordzsl | ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduninsuc 7665 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
2 | 1 | biimprd 247 | . . . . 5 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 = ∪ 𝐴)) |
3 | unizlim 6368 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) | |
4 | 2, 3 | sylibd 238 | . . . 4 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴))) |
5 | 4 | orrd 859 | . . 3 ⊢ (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
6 | 3orass 1088 | . . . 4 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))) | |
7 | or12 917 | . . . 4 ⊢ ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
9 | 5, 8 | sylibr 233 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
10 | ord0 6303 | . . . 4 ⊢ Ord ∅ | |
11 | ordeq 6258 | . . . 4 ⊢ (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅)) | |
12 | 10, 11 | mpbiri 257 | . . 3 ⊢ (𝐴 = ∅ → Ord 𝐴) |
13 | suceloni 7635 | . . . . . 6 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
14 | eleq1 2826 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) | |
15 | 13, 14 | syl5ibr 245 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On)) |
16 | eloni 6261 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
17 | 15, 16 | syl6com 37 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴)) |
18 | 17 | rexlimiv 3208 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴) |
19 | limord 6310 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
20 | 12, 18, 19 | 3jaoi 1425 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴) |
21 | 9, 20 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 843 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∅c0 4253 ∪ cuni 4836 Ord word 6250 Oncon0 6251 Lim wlim 6252 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 |
This theorem is referenced by: onzsl 7668 tfrlem16 8195 omeulem1 8375 oaabs2 8439 rankxplim3 9570 rankxpsuc 9571 cardlim 9661 cardaleph 9776 cflim2 9950 dfrdg2 33677 |
Copyright terms: Public domain | W3C validator |