Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordzsl | Structured version Visualization version GIF version |
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
Ref | Expression |
---|---|
ordzsl | ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduninsuc 7690 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
2 | 1 | biimprd 247 | . . . . 5 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 = ∪ 𝐴)) |
3 | unizlim 6383 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) | |
4 | 2, 3 | sylibd 238 | . . . 4 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴))) |
5 | 4 | orrd 860 | . . 3 ⊢ (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
6 | 3orass 1089 | . . . 4 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))) | |
7 | or12 918 | . . . 4 ⊢ ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
9 | 5, 8 | sylibr 233 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
10 | ord0 6318 | . . . 4 ⊢ Ord ∅ | |
11 | ordeq 6273 | . . . 4 ⊢ (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅)) | |
12 | 10, 11 | mpbiri 257 | . . 3 ⊢ (𝐴 = ∅ → Ord 𝐴) |
13 | suceloni 7659 | . . . . . 6 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
14 | eleq1 2826 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) | |
15 | 13, 14 | syl5ibr 245 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On)) |
16 | eloni 6276 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
17 | 15, 16 | syl6com 37 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴)) |
18 | 17 | rexlimiv 3209 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴) |
19 | limord 6325 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
20 | 12, 18, 19 | 3jaoi 1426 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴) |
21 | 9, 20 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∅c0 4256 ∪ cuni 4839 Ord word 6265 Oncon0 6266 Lim wlim 6267 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 |
This theorem is referenced by: onzsl 7693 tfrlem16 8224 omeulem1 8413 oaabs2 8479 rankxplim3 9639 rankxpsuc 9640 cardlim 9730 cardaleph 9845 cflim2 10019 dfrdg2 33771 |
Copyright terms: Public domain | W3C validator |