MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordzsl Structured version   Visualization version   GIF version

Theorem ordzsl 7801
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of [Schloeder] p. 2. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
ordzsl (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ordzsl
StepHypRef Expression
1 orduninsuc 7799 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
21biimprd 248 . . . . 5 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥𝐴 = 𝐴))
3 unizlim 6445 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
42, 3sylibd 239 . . . 4 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴)))
54orrd 863 . . 3 (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
6 3orass 1089 . . . 4 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)))
7 or12 920 . . . 4 ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
86, 7bitri 275 . . 3 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
95, 8sylibr 234 . 2 (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
10 ord0 6374 . . . 4 Ord ∅
11 ordeq 6327 . . . 4 (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅))
1210, 11mpbiri 258 . . 3 (𝐴 = ∅ → Ord 𝐴)
13 onsuc 7767 . . . . . 6 (𝑥 ∈ On → suc 𝑥 ∈ On)
14 eleq1 2816 . . . . . 6 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
1513, 14imbitrrid 246 . . . . 5 (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On))
16 eloni 6330 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
1715, 16syl6com 37 . . . 4 (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴))
1817rexlimiv 3127 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴)
19 limord 6381 . . 3 (Lim 𝐴 → Ord 𝐴)
2012, 18, 193jaoi 1430 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴)
219, 20impbii 209 1 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847  w3o 1085   = wceq 1540  wcel 2109  wrex 3053  c0 4292   cuni 4867  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326
This theorem is referenced by:  onzsl  7802  tfrlem16  8338  omeulem1  8523  oaabs2  8590  rankxplim3  9810  rankxpsuc  9811  cardlim  9901  cardaleph  10018  cflim2  10192  dfrdg2  35776
  Copyright terms: Public domain W3C validator