MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordzsl Structured version   Visualization version   GIF version

Theorem ordzsl 7830
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of [Schloeder] p. 2. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
ordzsl (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ordzsl
StepHypRef Expression
1 orduninsuc 7828 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
21biimprd 247 . . . . 5 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥𝐴 = 𝐴))
3 unizlim 6480 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
42, 3sylibd 238 . . . 4 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴)))
54orrd 860 . . 3 (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
6 3orass 1087 . . . 4 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)))
7 or12 917 . . . 4 ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
86, 7bitri 275 . . 3 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
95, 8sylibr 233 . 2 (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
10 ord0 6410 . . . 4 Ord ∅
11 ordeq 6364 . . . 4 (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅))
1210, 11mpbiri 258 . . 3 (𝐴 = ∅ → Ord 𝐴)
13 onsuc 7795 . . . . . 6 (𝑥 ∈ On → suc 𝑥 ∈ On)
14 eleq1 2815 . . . . . 6 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
1513, 14imbitrrid 245 . . . . 5 (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On))
16 eloni 6367 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
1715, 16syl6com 37 . . . 4 (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴))
1817rexlimiv 3142 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴)
19 limord 6417 . . 3 (Lim 𝐴 → Ord 𝐴)
2012, 18, 193jaoi 1424 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴)
219, 20impbii 208 1 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844  w3o 1083   = wceq 1533  wcel 2098  wrex 3064  c0 4317   cuni 4902  Ord word 6356  Oncon0 6357  Lim wlim 6358  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363
This theorem is referenced by:  onzsl  7831  tfrlem16  8391  omeulem1  8580  oaabs2  8647  rankxplim3  9875  rankxpsuc  9876  cardlim  9966  cardaleph  10083  cflim2  10257  dfrdg2  35300
  Copyright terms: Public domain W3C validator