MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordzsl Structured version   Visualization version   GIF version

Theorem ordzsl 7602
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
ordzsl (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ordzsl
StepHypRef Expression
1 orduninsuc 7600 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
21biimprd 251 . . . . 5 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥𝐴 = 𝐴))
3 unizlim 6308 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
42, 3sylibd 242 . . . 4 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴)))
54orrd 863 . . 3 (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
6 3orass 1092 . . . 4 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)))
7 or12 921 . . . 4 ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
86, 7bitri 278 . . 3 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴)))
95, 8sylibr 237 . 2 (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
10 ord0 6243 . . . 4 Ord ∅
11 ordeq 6198 . . . 4 (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅))
1210, 11mpbiri 261 . . 3 (𝐴 = ∅ → Ord 𝐴)
13 suceloni 7570 . . . . . 6 (𝑥 ∈ On → suc 𝑥 ∈ On)
14 eleq1 2818 . . . . . 6 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
1513, 14syl5ibr 249 . . . . 5 (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On))
16 eloni 6201 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
1715, 16syl6com 37 . . . 4 (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴))
1817rexlimiv 3189 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴)
19 limord 6250 . . 3 (Lim 𝐴 → Ord 𝐴)
2012, 18, 193jaoi 1429 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴)
219, 20impbii 212 1 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wo 847  w3o 1088   = wceq 1543  wcel 2112  wrex 3052  c0 4223   cuni 4805  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-11 2160  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-tr 5147  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197
This theorem is referenced by:  onzsl  7603  tfrlem16  8107  omeulem1  8288  oaabs2  8352  rankxplim3  9462  rankxpsuc  9463  cardlim  9553  cardaleph  9668  cflim2  9842  dfrdg2  33441
  Copyright terms: Public domain W3C validator