![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordzsl | Structured version Visualization version GIF version |
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of [Schloeder] p. 2. (Contributed by NM, 1-Oct-2003.) |
Ref | Expression |
---|---|
ordzsl | ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduninsuc 7864 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
2 | 1 | biimprd 248 | . . . . 5 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 = ∪ 𝐴)) |
3 | unizlim 6509 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) | |
4 | 2, 3 | sylibd 239 | . . . 4 ⊢ (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ Lim 𝐴))) |
5 | 4 | orrd 863 | . . 3 ⊢ (Ord 𝐴 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
6 | 3orass 1089 | . . . 4 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))) | |
7 | or12 920 | . . . 4 ⊢ ((𝐴 = ∅ ∨ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) | |
8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) ↔ (∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 = ∅ ∨ Lim 𝐴))) |
9 | 5, 8 | sylibr 234 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
10 | ord0 6439 | . . . 4 ⊢ Ord ∅ | |
11 | ordeq 6393 | . . . 4 ⊢ (𝐴 = ∅ → (Ord 𝐴 ↔ Ord ∅)) | |
12 | 10, 11 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → Ord 𝐴) |
13 | onsuc 7831 | . . . . . 6 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
14 | eleq1 2827 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) | |
15 | 13, 14 | imbitrrid 246 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (𝑥 ∈ On → 𝐴 ∈ On)) |
16 | eloni 6396 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
17 | 15, 16 | syl6com 37 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → Ord 𝐴)) |
18 | 17 | rexlimiv 3146 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴) |
19 | limord 6446 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
20 | 12, 18, 19 | 3jaoi 1427 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴) → Ord 𝐴) |
21 | 9, 20 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ∅c0 4339 ∪ cuni 4912 Ord word 6385 Oncon0 6386 Lim wlim 6387 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 |
This theorem is referenced by: onzsl 7867 tfrlem16 8432 omeulem1 8619 oaabs2 8686 rankxplim3 9919 rankxpsuc 9920 cardlim 10010 cardaleph 10127 cflim2 10301 dfrdg2 35777 |
Copyright terms: Public domain | W3C validator |