MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmullem2 Structured version   Visualization version   GIF version

Theorem xmullem2 12661
Description: Lemma for xmulneg1 12665. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmullem2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))

Proof of Theorem xmullem2
StepHypRef Expression
1 mnfnepnf 10700 . . . . . . . . . . . 12 -∞ ≠ +∞
2 eqeq1 2828 . . . . . . . . . . . . 13 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
32necon3bbid 3056 . . . . . . . . . . . 12 (𝐴 = -∞ → (¬ 𝐴 = +∞ ↔ -∞ ≠ +∞))
41, 3mpbiri 260 . . . . . . . . . . 11 (𝐴 = -∞ → ¬ 𝐴 = +∞)
54con2i 141 . . . . . . . . . 10 (𝐴 = +∞ → ¬ 𝐴 = -∞)
65adantl 484 . . . . . . . . 9 ((0 < 𝐵𝐴 = +∞) → ¬ 𝐴 = -∞)
7 0xr 10691 . . . . . . . . . . . . 13 0 ∈ ℝ*
8 nltmnf 12527 . . . . . . . . . . . . 13 (0 ∈ ℝ* → ¬ 0 < -∞)
97, 8ax-mp 5 . . . . . . . . . . . 12 ¬ 0 < -∞
10 breq2 5073 . . . . . . . . . . . 12 (𝐴 = -∞ → (0 < 𝐴 ↔ 0 < -∞))
119, 10mtbiri 329 . . . . . . . . . . 11 (𝐴 = -∞ → ¬ 0 < 𝐴)
1211con2i 141 . . . . . . . . . 10 (0 < 𝐴 → ¬ 𝐴 = -∞)
1312adantr 483 . . . . . . . . 9 ((0 < 𝐴𝐵 = +∞) → ¬ 𝐴 = -∞)
146, 13jaoi 853 . . . . . . . 8 (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐴 = -∞)
1514a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐴 = -∞))
16 simpr 487 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
17 xrltnsym 12533 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐵 < 0 → ¬ 0 < 𝐵))
1816, 7, 17sylancl 588 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 0 → ¬ 0 < 𝐵))
1918adantrd 494 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐵))
20 breq2 5073 . . . . . . . . . . 11 (𝐵 = -∞ → (0 < 𝐵 ↔ 0 < -∞))
219, 20mtbiri 329 . . . . . . . . . 10 (𝐵 = -∞ → ¬ 0 < 𝐵)
2221adantl 484 . . . . . . . . 9 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐵)
2322a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐵))
2419, 23jaod 855 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 0 < 𝐵))
2515, 24orim12d 961 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵)))
26 ianor 978 . . . . . . 7 (¬ (0 < 𝐵𝐴 = -∞) ↔ (¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞))
27 orcom 866 . . . . . . 7 ((¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞) ↔ (¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵))
2826, 27bitri 277 . . . . . 6 (¬ (0 < 𝐵𝐴 = -∞) ↔ (¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵))
2925, 28syl6ibr 254 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (0 < 𝐵𝐴 = -∞)))
3018con2d 136 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < 𝐵 → ¬ 𝐵 < 0))
3130adantrd 494 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐵𝐴 = +∞) → ¬ 𝐵 < 0))
32 pnfnlt 12526 . . . . . . . . . . 11 (0 ∈ ℝ* → ¬ +∞ < 0)
337, 32ax-mp 5 . . . . . . . . . 10 ¬ +∞ < 0
34 simpr 487 . . . . . . . . . . 11 ((0 < 𝐴𝐵 = +∞) → 𝐵 = +∞)
3534breq1d 5079 . . . . . . . . . 10 ((0 < 𝐴𝐵 = +∞) → (𝐵 < 0 ↔ +∞ < 0))
3633, 35mtbiri 329 . . . . . . . . 9 ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 < 0)
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 < 0))
3831, 37jaod 855 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐵 < 0))
394a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = -∞ → ¬ 𝐴 = +∞))
4039adantld 493 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 𝐴 = +∞))
41 breq1 5072 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 < 0 ↔ +∞ < 0))
4233, 41mtbiri 329 . . . . . . . . . . 11 (𝐴 = +∞ → ¬ 𝐴 < 0)
4342con2i 141 . . . . . . . . . 10 (𝐴 < 0 → ¬ 𝐴 = +∞)
4443adantr 483 . . . . . . . . 9 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐴 = +∞)
4544a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐴 = +∞))
4640, 45jaod 855 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐴 = +∞))
4738, 46orim12d 961 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞)))
48 ianor 978 . . . . . 6 (¬ (𝐵 < 0 ∧ 𝐴 = +∞) ↔ (¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞))
4947, 48syl6ibr 254 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞)))
5029, 49jcad 515 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞))))
51 ioran 980 . . . 4 (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ↔ (¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)))
5250, 51syl6ibr 254 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
5321con2i 141 . . . . . . . . . 10 (0 < 𝐵 → ¬ 𝐵 = -∞)
5453adantr 483 . . . . . . . . 9 ((0 < 𝐵𝐴 = +∞) → ¬ 𝐵 = -∞)
5554a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐵𝐴 = +∞) → ¬ 𝐵 = -∞))
56 pnfnemnf 10699 . . . . . . . . . . 11 +∞ ≠ -∞
57 eqeq1 2828 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐵 = -∞ ↔ +∞ = -∞))
5857necon3bbid 3056 . . . . . . . . . . 11 (𝐵 = +∞ → (¬ 𝐵 = -∞ ↔ +∞ ≠ -∞))
5956, 58mpbiri 260 . . . . . . . . . 10 (𝐵 = +∞ → ¬ 𝐵 = -∞)
6059adantl 484 . . . . . . . . 9 ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 = -∞)
6160a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 = -∞))
6255, 61jaod 855 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐵 = -∞))
6311adantl 484 . . . . . . . . 9 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐴)
6463a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐴))
65 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
66 xrltnsym 12533 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 < 0 → ¬ 0 < 𝐴))
6765, 7, 66sylancl 588 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 0 → ¬ 0 < 𝐴))
6867adantrd 494 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐴))
6964, 68jaod 855 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 0 < 𝐴))
7062, 69orim12d 961 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴)))
71 ianor 978 . . . . . . 7 (¬ (0 < 𝐴𝐵 = -∞) ↔ (¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞))
72 orcom 866 . . . . . . 7 ((¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞) ↔ (¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴))
7371, 72bitri 277 . . . . . 6 (¬ (0 < 𝐴𝐵 = -∞) ↔ (¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴))
7470, 73syl6ibr 254 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (0 < 𝐴𝐵 = -∞)))
7542adantl 484 . . . . . . . . 9 ((0 < 𝐵𝐴 = +∞) → ¬ 𝐴 < 0)
7675a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐵𝐴 = +∞) → ¬ 𝐴 < 0))
7767con2d 136 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0))
7877adantrd 494 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴𝐵 = +∞) → ¬ 𝐴 < 0))
7976, 78jaod 855 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐴 < 0))
80 breq1 5072 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐵 < 0 ↔ +∞ < 0))
8133, 80mtbiri 329 . . . . . . . . . . 11 (𝐵 = +∞ → ¬ 𝐵 < 0)
8281con2i 141 . . . . . . . . . 10 (𝐵 < 0 → ¬ 𝐵 = +∞)
8382adantr 483 . . . . . . . . 9 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 𝐵 = +∞)
8459con2i 141 . . . . . . . . . 10 (𝐵 = -∞ → ¬ 𝐵 = +∞)
8584adantl 484 . . . . . . . . 9 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐵 = +∞)
8683, 85jaoi 853 . . . . . . . 8 (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐵 = +∞)
8786a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐵 = +∞))
8879, 87orim12d 961 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞)))
89 ianor 978 . . . . . 6 (¬ (𝐴 < 0 ∧ 𝐵 = +∞) ↔ (¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞))
9088, 89syl6ibr 254 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))
9174, 90jcad 515 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))
92 ioran 980 . . . 4 (¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ↔ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))
9391, 92syl6ibr 254 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
9452, 93jcad 515 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
95 or4 923 . 2 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
96 ioran 980 . 2 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
9794, 95, 963imtr4g 298 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  0cc0 10540  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   < clt 10678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-addrcl 10601  ax-rnegex 10611  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683
This theorem is referenced by:  xmulneg1  12665
  Copyright terms: Public domain W3C validator