MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmullem2 Structured version   Visualization version   GIF version

Theorem xmullem2 12999
Description: Lemma for xmulneg1 13003. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmullem2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))

Proof of Theorem xmullem2
StepHypRef Expression
1 mnfnepnf 11031 . . . . . . . . . . . 12 -∞ ≠ +∞
2 eqeq1 2742 . . . . . . . . . . . . 13 (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ = +∞))
32necon3bbid 2981 . . . . . . . . . . . 12 (𝐴 = -∞ → (¬ 𝐴 = +∞ ↔ -∞ ≠ +∞))
41, 3mpbiri 257 . . . . . . . . . . 11 (𝐴 = -∞ → ¬ 𝐴 = +∞)
54con2i 139 . . . . . . . . . 10 (𝐴 = +∞ → ¬ 𝐴 = -∞)
65adantl 482 . . . . . . . . 9 ((0 < 𝐵𝐴 = +∞) → ¬ 𝐴 = -∞)
7 0xr 11022 . . . . . . . . . . . . 13 0 ∈ ℝ*
8 nltmnf 12865 . . . . . . . . . . . . 13 (0 ∈ ℝ* → ¬ 0 < -∞)
97, 8ax-mp 5 . . . . . . . . . . . 12 ¬ 0 < -∞
10 breq2 5078 . . . . . . . . . . . 12 (𝐴 = -∞ → (0 < 𝐴 ↔ 0 < -∞))
119, 10mtbiri 327 . . . . . . . . . . 11 (𝐴 = -∞ → ¬ 0 < 𝐴)
1211con2i 139 . . . . . . . . . 10 (0 < 𝐴 → ¬ 𝐴 = -∞)
1312adantr 481 . . . . . . . . 9 ((0 < 𝐴𝐵 = +∞) → ¬ 𝐴 = -∞)
146, 13jaoi 854 . . . . . . . 8 (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐴 = -∞)
1514a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐴 = -∞))
16 simpr 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
17 xrltnsym 12871 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐵 < 0 → ¬ 0 < 𝐵))
1816, 7, 17sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 0 → ¬ 0 < 𝐵))
1918adantrd 492 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐵))
20 breq2 5078 . . . . . . . . . . 11 (𝐵 = -∞ → (0 < 𝐵 ↔ 0 < -∞))
219, 20mtbiri 327 . . . . . . . . . 10 (𝐵 = -∞ → ¬ 0 < 𝐵)
2221adantl 482 . . . . . . . . 9 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐵)
2322a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐵))
2419, 23jaod 856 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 0 < 𝐵))
2515, 24orim12d 962 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵)))
26 ianor 979 . . . . . . 7 (¬ (0 < 𝐵𝐴 = -∞) ↔ (¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞))
27 orcom 867 . . . . . . 7 ((¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞) ↔ (¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵))
2826, 27bitri 274 . . . . . 6 (¬ (0 < 𝐵𝐴 = -∞) ↔ (¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵))
2925, 28syl6ibr 251 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (0 < 𝐵𝐴 = -∞)))
3018con2d 134 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < 𝐵 → ¬ 𝐵 < 0))
3130adantrd 492 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐵𝐴 = +∞) → ¬ 𝐵 < 0))
32 pnfnlt 12864 . . . . . . . . . . 11 (0 ∈ ℝ* → ¬ +∞ < 0)
337, 32ax-mp 5 . . . . . . . . . 10 ¬ +∞ < 0
34 simpr 485 . . . . . . . . . . 11 ((0 < 𝐴𝐵 = +∞) → 𝐵 = +∞)
3534breq1d 5084 . . . . . . . . . 10 ((0 < 𝐴𝐵 = +∞) → (𝐵 < 0 ↔ +∞ < 0))
3633, 35mtbiri 327 . . . . . . . . 9 ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 < 0)
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 < 0))
3831, 37jaod 856 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐵 < 0))
394a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = -∞ → ¬ 𝐴 = +∞))
4039adantld 491 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 𝐴 = +∞))
41 breq1 5077 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 < 0 ↔ +∞ < 0))
4233, 41mtbiri 327 . . . . . . . . . . 11 (𝐴 = +∞ → ¬ 𝐴 < 0)
4342con2i 139 . . . . . . . . . 10 (𝐴 < 0 → ¬ 𝐴 = +∞)
4443adantr 481 . . . . . . . . 9 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐴 = +∞)
4544a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐴 = +∞))
4640, 45jaod 856 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐴 = +∞))
4738, 46orim12d 962 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞)))
48 ianor 979 . . . . . 6 (¬ (𝐵 < 0 ∧ 𝐴 = +∞) ↔ (¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞))
4947, 48syl6ibr 251 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞)))
5029, 49jcad 513 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞))))
51 ioran 981 . . . 4 (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ↔ (¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)))
5250, 51syl6ibr 251 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
5321con2i 139 . . . . . . . . . 10 (0 < 𝐵 → ¬ 𝐵 = -∞)
5453adantr 481 . . . . . . . . 9 ((0 < 𝐵𝐴 = +∞) → ¬ 𝐵 = -∞)
5554a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐵𝐴 = +∞) → ¬ 𝐵 = -∞))
56 pnfnemnf 11030 . . . . . . . . . . 11 +∞ ≠ -∞
57 eqeq1 2742 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐵 = -∞ ↔ +∞ = -∞))
5857necon3bbid 2981 . . . . . . . . . . 11 (𝐵 = +∞ → (¬ 𝐵 = -∞ ↔ +∞ ≠ -∞))
5956, 58mpbiri 257 . . . . . . . . . 10 (𝐵 = +∞ → ¬ 𝐵 = -∞)
6059adantl 482 . . . . . . . . 9 ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 = -∞)
6160a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴𝐵 = +∞) → ¬ 𝐵 = -∞))
6255, 61jaod 856 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐵 = -∞))
6311adantl 482 . . . . . . . . 9 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐴)
6463a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐴))
65 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
66 xrltnsym 12871 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 < 0 → ¬ 0 < 𝐴))
6765, 7, 66sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 0 → ¬ 0 < 𝐴))
6867adantrd 492 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐴))
6964, 68jaod 856 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 0 < 𝐴))
7062, 69orim12d 962 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴)))
71 ianor 979 . . . . . . 7 (¬ (0 < 𝐴𝐵 = -∞) ↔ (¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞))
72 orcom 867 . . . . . . 7 ((¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞) ↔ (¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴))
7371, 72bitri 274 . . . . . 6 (¬ (0 < 𝐴𝐵 = -∞) ↔ (¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴))
7470, 73syl6ibr 251 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (0 < 𝐴𝐵 = -∞)))
7542adantl 482 . . . . . . . . 9 ((0 < 𝐵𝐴 = +∞) → ¬ 𝐴 < 0)
7675a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐵𝐴 = +∞) → ¬ 𝐴 < 0))
7767con2d 134 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0))
7877adantrd 492 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴𝐵 = +∞) → ¬ 𝐴 < 0))
7976, 78jaod 856 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) → ¬ 𝐴 < 0))
80 breq1 5077 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐵 < 0 ↔ +∞ < 0))
8133, 80mtbiri 327 . . . . . . . . . . 11 (𝐵 = +∞ → ¬ 𝐵 < 0)
8281con2i 139 . . . . . . . . . 10 (𝐵 < 0 → ¬ 𝐵 = +∞)
8382adantr 481 . . . . . . . . 9 ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 𝐵 = +∞)
8459con2i 139 . . . . . . . . . 10 (𝐵 = -∞ → ¬ 𝐵 = +∞)
8584adantl 482 . . . . . . . . 9 ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐵 = +∞)
8683, 85jaoi 854 . . . . . . . 8 (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐵 = +∞)
8786a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐵 = +∞))
8879, 87orim12d 962 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞)))
89 ianor 979 . . . . . 6 (¬ (𝐴 < 0 ∧ 𝐵 = +∞) ↔ (¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞))
9088, 89syl6ibr 251 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))
9174, 90jcad 513 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))
92 ioran 981 . . . 4 (¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ↔ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))
9391, 92syl6ibr 251 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
9452, 93jcad 513 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
95 or4 924 . 2 ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (((0 < 𝐵𝐴 = +∞) ∨ (0 < 𝐴𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
96 ioran 981 . 2 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
9794, 95, 963imtr4g 296 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  0cc0 10871  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-addrcl 10932  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014
This theorem is referenced by:  xmulneg1  13003
  Copyright terms: Public domain W3C validator