Proof of Theorem xmullem2
Step | Hyp | Ref
| Expression |
1 | | mnfnepnf 11031 |
. . . . . . . . . . . 12
⊢ -∞
≠ +∞ |
2 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝐴 = -∞ → (𝐴 = +∞ ↔ -∞ =
+∞)) |
3 | 2 | necon3bbid 2981 |
. . . . . . . . . . . 12
⊢ (𝐴 = -∞ → (¬ 𝐴 = +∞ ↔ -∞ ≠
+∞)) |
4 | 1, 3 | mpbiri 257 |
. . . . . . . . . . 11
⊢ (𝐴 = -∞ → ¬ 𝐴 = +∞) |
5 | 4 | con2i 139 |
. . . . . . . . . 10
⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
6 | 5 | adantl 482 |
. . . . . . . . 9
⊢ ((0 <
𝐵 ∧ 𝐴 = +∞) → ¬ 𝐴 = -∞) |
7 | | 0xr 11022 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ* |
8 | | nltmnf 12865 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ* → ¬ 0 < -∞) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ¬ 0
< -∞ |
10 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝐴 = -∞ → (0 < 𝐴 ↔ 0 <
-∞)) |
11 | 9, 10 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝐴 = -∞ → ¬ 0 <
𝐴) |
12 | 11 | con2i 139 |
. . . . . . . . . 10
⊢ (0 <
𝐴 → ¬ 𝐴 = -∞) |
13 | 12 | adantr 481 |
. . . . . . . . 9
⊢ ((0 <
𝐴 ∧ 𝐵 = +∞) → ¬ 𝐴 = -∞) |
14 | 6, 13 | jaoi 854 |
. . . . . . . 8
⊢ (((0 <
𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) → ¬ 𝐴 = -∞) |
15 | 14 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) → ¬ 𝐴 = -∞)) |
16 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ∈
ℝ*) |
17 | | xrltnsym 12871 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ*
∧ 0 ∈ ℝ*) → (𝐵 < 0 → ¬ 0 < 𝐵)) |
18 | 16, 7, 17 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 < 0 → ¬ 0 < 𝐵)) |
19 | 18 | adantrd 492 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐵)) |
20 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝐵 = -∞ → (0 < 𝐵 ↔ 0 <
-∞)) |
21 | 9, 20 | mtbiri 327 |
. . . . . . . . . 10
⊢ (𝐵 = -∞ → ¬ 0 <
𝐵) |
22 | 21 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐵) |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐵)) |
24 | 19, 23 | jaod 856 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 0 < 𝐵)) |
25 | 15, 24 | orim12d 962 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐴 = -∞ ∨ ¬ 0 <
𝐵))) |
26 | | ianor 979 |
. . . . . . 7
⊢ (¬ (0
< 𝐵 ∧ 𝐴 = -∞) ↔ (¬ 0
< 𝐵 ∨ ¬ 𝐴 = -∞)) |
27 | | orcom 867 |
. . . . . . 7
⊢ ((¬ 0
< 𝐵 ∨ ¬ 𝐴 = -∞) ↔ (¬ 𝐴 = -∞ ∨ ¬ 0 <
𝐵)) |
28 | 26, 27 | bitri 274 |
. . . . . 6
⊢ (¬ (0
< 𝐵 ∧ 𝐴 = -∞) ↔ (¬ 𝐴 = -∞ ∨ ¬ 0 <
𝐵)) |
29 | 25, 28 | syl6ibr 251 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (0 < 𝐵 ∧ 𝐴 = -∞))) |
30 | 18 | con2d 134 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (0 < 𝐵 → ¬ 𝐵 < 0)) |
31 | 30 | adantrd 492 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((0 < 𝐵 ∧ 𝐴 = +∞) → ¬ 𝐵 < 0)) |
32 | | pnfnlt 12864 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ* → ¬ +∞ < 0) |
33 | 7, 32 | ax-mp 5 |
. . . . . . . . . 10
⊢ ¬
+∞ < 0 |
34 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((0 <
𝐴 ∧ 𝐵 = +∞) → 𝐵 = +∞) |
35 | 34 | breq1d 5084 |
. . . . . . . . . 10
⊢ ((0 <
𝐴 ∧ 𝐵 = +∞) → (𝐵 < 0 ↔ +∞ <
0)) |
36 | 33, 35 | mtbiri 327 |
. . . . . . . . 9
⊢ ((0 <
𝐴 ∧ 𝐵 = +∞) → ¬ 𝐵 < 0) |
37 | 36 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((0 < 𝐴 ∧ 𝐵 = +∞) → ¬ 𝐵 < 0)) |
38 | 31, 37 | jaod 856 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) → ¬ 𝐵 < 0)) |
39 | 4 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 = -∞ → ¬ 𝐴 = +∞)) |
40 | 39 | adantld 491 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 𝐴 = +∞)) |
41 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝐴 = +∞ → (𝐴 < 0 ↔ +∞ <
0)) |
42 | 33, 41 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝐴 = +∞ → ¬ 𝐴 < 0) |
43 | 42 | con2i 139 |
. . . . . . . . . 10
⊢ (𝐴 < 0 → ¬ 𝐴 = +∞) |
44 | 43 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐴 = +∞) |
45 | 44 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐴 = +∞)) |
46 | 40, 45 | jaod 856 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐴 = +∞)) |
47 | 38, 46 | orim12d 962 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞))) |
48 | | ianor 979 |
. . . . . 6
⊢ (¬
(𝐵 < 0 ∧ 𝐴 = +∞) ↔ (¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞)) |
49 | 47, 48 | syl6ibr 251 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞))) |
50 | 29, 49 | jcad 513 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)))) |
51 | | ioran 981 |
. . . 4
⊢ (¬
((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ↔ (¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞))) |
52 | 50, 51 | syl6ibr 251 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)))) |
53 | 21 | con2i 139 |
. . . . . . . . . 10
⊢ (0 <
𝐵 → ¬ 𝐵 = -∞) |
54 | 53 | adantr 481 |
. . . . . . . . 9
⊢ ((0 <
𝐵 ∧ 𝐴 = +∞) → ¬ 𝐵 = -∞) |
55 | 54 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((0 < 𝐵 ∧ 𝐴 = +∞) → ¬ 𝐵 = -∞)) |
56 | | pnfnemnf 11030 |
. . . . . . . . . . 11
⊢ +∞
≠ -∞ |
57 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝐵 = +∞ → (𝐵 = -∞ ↔ +∞ =
-∞)) |
58 | 57 | necon3bbid 2981 |
. . . . . . . . . . 11
⊢ (𝐵 = +∞ → (¬ 𝐵 = -∞ ↔ +∞ ≠
-∞)) |
59 | 56, 58 | mpbiri 257 |
. . . . . . . . . 10
⊢ (𝐵 = +∞ → ¬ 𝐵 = -∞) |
60 | 59 | adantl 482 |
. . . . . . . . 9
⊢ ((0 <
𝐴 ∧ 𝐵 = +∞) → ¬ 𝐵 = -∞) |
61 | 60 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((0 < 𝐴 ∧ 𝐵 = +∞) → ¬ 𝐵 = -∞)) |
62 | 55, 61 | jaod 856 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) → ¬ 𝐵 = -∞)) |
63 | 11 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐴) |
64 | 63 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 0 < 𝐴)) |
65 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ∈
ℝ*) |
66 | | xrltnsym 12871 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 0 ∈ ℝ*) → (𝐴 < 0 → ¬ 0 < 𝐴)) |
67 | 65, 7, 66 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 0 → ¬ 0 < 𝐴)) |
68 | 67 | adantrd 492 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 0 < 𝐴)) |
69 | 64, 68 | jaod 856 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 0 < 𝐴)) |
70 | 62, 69 | orim12d 962 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐵 = -∞ ∨ ¬ 0 <
𝐴))) |
71 | | ianor 979 |
. . . . . . 7
⊢ (¬ (0
< 𝐴 ∧ 𝐵 = -∞) ↔ (¬ 0
< 𝐴 ∨ ¬ 𝐵 = -∞)) |
72 | | orcom 867 |
. . . . . . 7
⊢ ((¬ 0
< 𝐴 ∨ ¬ 𝐵 = -∞) ↔ (¬ 𝐵 = -∞ ∨ ¬ 0 <
𝐴)) |
73 | 71, 72 | bitri 274 |
. . . . . 6
⊢ (¬ (0
< 𝐴 ∧ 𝐵 = -∞) ↔ (¬ 𝐵 = -∞ ∨ ¬ 0 <
𝐴)) |
74 | 70, 73 | syl6ibr 251 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (0 < 𝐴 ∧ 𝐵 = -∞))) |
75 | 42 | adantl 482 |
. . . . . . . . 9
⊢ ((0 <
𝐵 ∧ 𝐴 = +∞) → ¬ 𝐴 < 0) |
76 | 75 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((0 < 𝐵 ∧ 𝐴 = +∞) → ¬ 𝐴 < 0)) |
77 | 67 | con2d 134 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0)) |
78 | 77 | adantrd 492 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((0 < 𝐴 ∧ 𝐵 = +∞) → ¬ 𝐴 < 0)) |
79 | 76, 78 | jaod 856 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) → ¬ 𝐴 < 0)) |
80 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝐵 = +∞ → (𝐵 < 0 ↔ +∞ <
0)) |
81 | 33, 80 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝐵 = +∞ → ¬ 𝐵 < 0) |
82 | 81 | con2i 139 |
. . . . . . . . . 10
⊢ (𝐵 < 0 → ¬ 𝐵 = +∞) |
83 | 82 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐵 < 0 ∧ 𝐴 = -∞) → ¬ 𝐵 = +∞) |
84 | 59 | con2i 139 |
. . . . . . . . . 10
⊢ (𝐵 = -∞ → ¬ 𝐵 = +∞) |
85 | 84 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 < 0 ∧ 𝐵 = -∞) → ¬ 𝐵 = +∞) |
86 | 83, 85 | jaoi 854 |
. . . . . . . 8
⊢ (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐵 = +∞) |
87 | 86 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) → ¬ 𝐵 = +∞)) |
88 | 79, 87 | orim12d 962 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞))) |
89 | | ianor 979 |
. . . . . 6
⊢ (¬
(𝐴 < 0 ∧ 𝐵 = +∞) ↔ (¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞)) |
90 | 88, 89 | syl6ibr 251 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (𝐴 < 0 ∧ 𝐵 = +∞))) |
91 | 74, 90 | jcad 513 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
92 | | ioran 981 |
. . . 4
⊢ (¬
((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ↔ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))) |
93 | 91, 92 | syl6ibr 251 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
94 | 52, 93 | jcad 513 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → (¬ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) |
95 | | or4 924 |
. 2
⊢ ((((0
< 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (0 < 𝐴 ∧ 𝐵 = +∞)) ∨ ((𝐵 < 0 ∧ 𝐴 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) |
96 | | ioran 981 |
. 2
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (¬ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
97 | 94, 95, 96 | 3imtr4g 296 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) |