MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnnn0nd Structured version   Visualization version   GIF version

Theorem swrdnnn0nd 14297
Description: The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdnnn0nd ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)

Proof of Theorem swrdnnn0nd
StepHypRef Expression
1 ianor 978 . . . 4 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
2 ianor 978 . . . . . . 7 (¬ (𝐹 ∈ ℤ ∧ 0 ≤ 𝐹) ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹))
3 elnn0z 12262 . . . . . . 7 (𝐹 ∈ ℕ0 ↔ (𝐹 ∈ ℤ ∧ 0 ≤ 𝐹))
42, 3xchnxbir 332 . . . . . 6 𝐹 ∈ ℕ0 ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹))
5 ianor 978 . . . . . . 7 (¬ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿) ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿))
6 elnn0z 12262 . . . . . . 7 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
75, 6xchnxbir 332 . . . . . 6 𝐿 ∈ ℕ0 ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿))
84, 7orbi12i 911 . . . . 5 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ ((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)))
9 or4 923 . . . . . 6 (((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)) ↔ ((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
10 ianor 978 . . . . . . . 8 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ))
1110bicomi 223 . . . . . . 7 ((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ↔ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
1211orbi1i 910 . . . . . 6 (((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
139, 12bitri 274 . . . . 5 (((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
148, 13bitri 274 . . . 4 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
151, 14bitri 274 . . 3 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
16 swrdnznd 14283 . . . . 5 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
1716a1d 25 . . . 4 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
18 notnotb 314 . . . . . 6 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ ¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
19 zre 12253 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
20 0red 10909 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℤ → 0 ∈ ℝ)
2119, 20jca 511 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ ℤ → (𝐹 ∈ ℝ ∧ 0 ∈ ℝ))
22213ad2ant2 1132 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℝ ∧ 0 ∈ ℝ))
23 ltnle 10985 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
2422, 23syl 17 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
25 orc 863 . . . . . . . . . . . . . . . . 17 (𝐹 < 0 → (𝐹 < 0 ∨ 𝐿𝐹))
2624, 25syl6bir 253 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 → (𝐹 < 0 ∨ 𝐿𝐹)))
2726com12 32 . . . . . . . . . . . . . . 15 (¬ 0 ≤ 𝐹 → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
28 notnotb 314 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹)
2928a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹))
30 zre 12253 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
31 0red 10909 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3230, 31jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (𝐿 ∈ ℝ ∧ 0 ∈ ℝ))
33323ad2ant3 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 0 ∈ ℝ))
34 ltnle 10985 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐿 < 0 ↔ ¬ 0 ≤ 𝐿))
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 < 0 ↔ ¬ 0 ≤ 𝐿))
3629, 35anbi12d 630 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹𝐿 < 0) ↔ (¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿)))
37303ad2ant3 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
38 0red 10909 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
39193ad2ant2 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 ∈ ℝ)
40 ltleletr 10998 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → 𝐿𝐹))
4137, 38, 39, 40syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → 𝐿𝐹))
42 olc 864 . . . . . . . . . . . . . . . . . . 19 (𝐿𝐹 → (𝐹 < 0 ∨ 𝐿𝐹))
4341, 42syl6 35 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → (𝐹 < 0 ∨ 𝐿𝐹)))
4443ancomsd 465 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹𝐿 < 0) → (𝐹 < 0 ∨ 𝐿𝐹)))
4536, 44sylbird 259 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿) → (𝐹 < 0 ∨ 𝐿𝐹)))
4645com12 32 . . . . . . . . . . . . . . 15 ((¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿) → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
4727, 46jaoi3 1057 . . . . . . . . . . . . . 14 ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
4847impcom 407 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿𝐹))
4948orcd 869 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → ((𝐹 < 0 ∨ 𝐿𝐹) ∨ (♯‘𝑆) < 𝐿))
50 df-3or 1086 . . . . . . . . . . . 12 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) ↔ ((𝐹 < 0 ∨ 𝐿𝐹) ∨ (♯‘𝑆) < 𝐿))
5149, 50sylibr 233 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
52 swrdnd 14295 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5352imp 406 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
5451, 53syldan 590 . . . . . . . . . 10 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
5554ex 412 . . . . . . . . 9 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
56553expb 1118 . . . . . . . 8 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5756expcom 413 . . . . . . 7 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 ∈ Word 𝑉 → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5857com23 86 . . . . . 6 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5918, 58sylbir 234 . . . . 5 (¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6059imp 406 . . . 4 ((¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6117, 60jaoi3 1057 . . 3 ((¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6215, 61sylbi 216 . 2 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6362impcom 407 1 ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  c0 4253  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   < clt 10940  cle 10941  0cn0 12163  cz 12249  chash 13972  Word cword 14145   substr csubstr 14281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282
This theorem is referenced by:  swrdnd0  14298  pfxval0  14317
  Copyright terms: Public domain W3C validator