Proof of Theorem swrdnnn0nd
Step | Hyp | Ref
| Expression |
1 | | ianor 978 |
. . . 4
⊢ (¬
(𝐹 ∈
ℕ0 ∧ 𝐿
∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈
ℕ0)) |
2 | | ianor 978 |
. . . . . . 7
⊢ (¬
(𝐹 ∈ ℤ ∧ 0
≤ 𝐹) ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0
≤ 𝐹)) |
3 | | elnn0z 12262 |
. . . . . . 7
⊢ (𝐹 ∈ ℕ0
↔ (𝐹 ∈ ℤ
∧ 0 ≤ 𝐹)) |
4 | 2, 3 | xchnxbir 332 |
. . . . . 6
⊢ (¬
𝐹 ∈
ℕ0 ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹)) |
5 | | ianor 978 |
. . . . . . 7
⊢ (¬
(𝐿 ∈ ℤ ∧ 0
≤ 𝐿) ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0
≤ 𝐿)) |
6 | | elnn0z 12262 |
. . . . . . 7
⊢ (𝐿 ∈ ℕ0
↔ (𝐿 ∈ ℤ
∧ 0 ≤ 𝐿)) |
7 | 5, 6 | xchnxbir 332 |
. . . . . 6
⊢ (¬
𝐿 ∈
ℕ0 ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)) |
8 | 4, 7 | orbi12i 911 |
. . . . 5
⊢ ((¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ ((¬
𝐹 ∈ ℤ ∨ ¬
0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0
≤ 𝐿))) |
9 | | or4 923 |
. . . . . 6
⊢ (((¬
𝐹 ∈ ℤ ∨ ¬
0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0
≤ 𝐿)) ↔ ((¬
𝐹 ∈ ℤ ∨ ¬
𝐿 ∈ ℤ) ∨
(¬ 0 ≤ 𝐹 ∨ ¬
0 ≤ 𝐿))) |
10 | | ianor 978 |
. . . . . . . 8
⊢ (¬
(𝐹 ∈ ℤ ∧
𝐿 ∈ ℤ) ↔
(¬ 𝐹 ∈ ℤ
∨ ¬ 𝐿 ∈
ℤ)) |
11 | 10 | bicomi 223 |
. . . . . . 7
⊢ ((¬
𝐹 ∈ ℤ ∨ ¬
𝐿 ∈ ℤ) ↔
¬ (𝐹 ∈ ℤ
∧ 𝐿 ∈
ℤ)) |
12 | 11 | orbi1i 910 |
. . . . . 6
⊢ (((¬
𝐹 ∈ ℤ ∨ ¬
𝐿 ∈ ℤ) ∨
(¬ 0 ≤ 𝐹 ∨ ¬
0 ≤ 𝐿)) ↔ (¬
(𝐹 ∈ ℤ ∧
𝐿 ∈ ℤ) ∨
(¬ 0 ≤ 𝐹 ∨ ¬
0 ≤ 𝐿))) |
13 | 9, 12 | bitri 274 |
. . . . 5
⊢ (((¬
𝐹 ∈ ℤ ∨ ¬
0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0
≤ 𝐿)) ↔ (¬
(𝐹 ∈ ℤ ∧
𝐿 ∈ ℤ) ∨
(¬ 0 ≤ 𝐹 ∨ ¬
0 ≤ 𝐿))) |
14 | 8, 13 | bitri 274 |
. . . 4
⊢ ((¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬
(𝐹 ∈ ℤ ∧
𝐿 ∈ ℤ) ∨
(¬ 0 ≤ 𝐹 ∨ ¬
0 ≤ 𝐿))) |
15 | 1, 14 | bitri 274 |
. . 3
⊢ (¬
(𝐹 ∈
ℕ0 ∧ 𝐿
∈ ℕ0) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿))) |
16 | | swrdnznd 14283 |
. . . . 5
⊢ (¬
(𝐹 ∈ ℤ ∧
𝐿 ∈ ℤ) →
(𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
17 | 16 | a1d 25 |
. . . 4
⊢ (¬
(𝐹 ∈ ℤ ∧
𝐿 ∈ ℤ) →
(𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
18 | | notnotb 314 |
. . . . . 6
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ ¬
¬ (𝐹 ∈ ℤ
∧ 𝐿 ∈
ℤ)) |
19 | | zre 12253 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ ℤ → 𝐹 ∈
ℝ) |
20 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ ℤ → 0 ∈
ℝ) |
21 | 19, 20 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ∈ ℤ → (𝐹 ∈ ℝ ∧ 0 ∈
ℝ)) |
22 | 21 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℝ ∧ 0 ∈
ℝ)) |
23 | | ltnle 10985 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐹 < 0
↔ ¬ 0 ≤ 𝐹)) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹)) |
25 | | orc 863 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 < 0 → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹)) |
26 | 24, 25 | syl6bir 253 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹))) |
27 | 26 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (¬ 0
≤ 𝐹 → ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹))) |
28 | | notnotb 314 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ≤
𝐹 ↔ ¬ ¬ 0 ≤
𝐹) |
29 | 28 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹)) |
30 | | zre 12253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) |
31 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐿 ∈ ℤ → 0 ∈
ℝ) |
32 | 30, 31 | jca 511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐿 ∈ ℤ → (𝐿 ∈ ℝ ∧ 0 ∈
ℝ)) |
33 | 32 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 0 ∈
ℝ)) |
34 | | ltnle 10985 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐿 < 0
↔ ¬ 0 ≤ 𝐿)) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 < 0 ↔ ¬ 0 ≤ 𝐿)) |
36 | 29, 35 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹 ∧ 𝐿 < 0) ↔ (¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿))) |
37 | 30 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ) |
38 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈
ℝ) |
39 | 19 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 ∈ ℝ) |
40 | | ltleletr 10998 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℝ ∧ 0 ∈
ℝ ∧ 𝐹 ∈
ℝ) → ((𝐿 < 0
∧ 0 ≤ 𝐹) →
𝐿 ≤ 𝐹)) |
41 | 37, 38, 39, 40 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → 𝐿 ≤ 𝐹)) |
42 | | olc 864 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ≤ 𝐹 → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹)) |
43 | 41, 42 | syl6 35 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹))) |
44 | 43 | ancomsd 465 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹 ∧ 𝐿 < 0) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹))) |
45 | 36, 44 | sylbird 259 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ ¬ 0 ≤
𝐹 ∧ ¬ 0 ≤ 𝐿) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹))) |
46 | 45 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ ((¬
¬ 0 ≤ 𝐹 ∧ ¬
0 ≤ 𝐿) → ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹))) |
47 | 27, 46 | jaoi3 1057 |
. . . . . . . . . . . . . 14
⊢ ((¬ 0
≤ 𝐹 ∨ ¬ 0 ≤
𝐿) → ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹))) |
48 | 47 | impcom 407 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹)) |
49 | 48 | orcd 869 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹) ∨ (♯‘𝑆) < 𝐿)) |
50 | | df-3or 1086 |
. . . . . . . . . . . 12
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑆) < 𝐿) ↔ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹) ∨ (♯‘𝑆) < 𝐿)) |
51 | 49, 50 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑆) < 𝐿)) |
52 | | swrdnd 14295 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
53 | 52 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑆) < 𝐿)) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
54 | 51, 53 | syldan 590 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
55 | 54 | ex 412 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
56 | 55 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((¬ 0 ≤
𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
57 | 56 | expcom 413 |
. . . . . . 7
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 ∈ Word 𝑉 → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
58 | 57 | com23 86 |
. . . . . 6
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬
0 ≤ 𝐹 ∨ ¬ 0 ≤
𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
59 | 18, 58 | sylbir 234 |
. . . . 5
⊢ (¬
¬ (𝐹 ∈ ℤ
∧ 𝐿 ∈ ℤ)
→ ((¬ 0 ≤ 𝐹
∨ ¬ 0 ≤ 𝐿) →
(𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
60 | 59 | imp 406 |
. . . 4
⊢ ((¬
¬ (𝐹 ∈ ℤ
∧ 𝐿 ∈ ℤ)
∧ (¬ 0 ≤ 𝐹 ∨
¬ 0 ≤ 𝐿)) →
(𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
61 | 17, 60 | jaoi3 1057 |
. . 3
⊢ ((¬
(𝐹 ∈ ℤ ∧
𝐿 ∈ ℤ) ∨
(¬ 0 ≤ 𝐹 ∨ ¬
0 ≤ 𝐿)) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
62 | 15, 61 | sylbi 216 |
. 2
⊢ (¬
(𝐹 ∈
ℕ0 ∧ 𝐿
∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
63 | 62 | impcom 407 |
1
⊢ ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
→ (𝑆 substr
〈𝐹, 𝐿〉) = ∅) |