MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnnn0nd Structured version   Visualization version   GIF version

Theorem swrdnnn0nd 14659
Description: The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdnnn0nd ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)

Proof of Theorem swrdnnn0nd
StepHypRef Expression
1 ianor 979 . . . 4 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
2 ianor 979 . . . . . . 7 (¬ (𝐹 ∈ ℤ ∧ 0 ≤ 𝐹) ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹))
3 elnn0z 12617 . . . . . . 7 (𝐹 ∈ ℕ0 ↔ (𝐹 ∈ ℤ ∧ 0 ≤ 𝐹))
42, 3xchnxbir 332 . . . . . 6 𝐹 ∈ ℕ0 ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹))
5 ianor 979 . . . . . . 7 (¬ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿) ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿))
6 elnn0z 12617 . . . . . . 7 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
75, 6xchnxbir 332 . . . . . 6 𝐿 ∈ ℕ0 ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿))
84, 7orbi12i 912 . . . . 5 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ ((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)))
9 or4 924 . . . . . 6 (((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)) ↔ ((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
10 ianor 979 . . . . . . . 8 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ))
1110bicomi 223 . . . . . . 7 ((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ↔ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
1211orbi1i 911 . . . . . 6 (((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
139, 12bitri 274 . . . . 5 (((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
148, 13bitri 274 . . . 4 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
151, 14bitri 274 . . 3 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
16 swrdnznd 14645 . . . . 5 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
1716a1d 25 . . . 4 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
18 notnotb 314 . . . . . 6 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ ¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
19 zre 12608 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
20 0red 11258 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℤ → 0 ∈ ℝ)
2119, 20jca 510 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ ℤ → (𝐹 ∈ ℝ ∧ 0 ∈ ℝ))
22213ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℝ ∧ 0 ∈ ℝ))
23 ltnle 11334 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
2422, 23syl 17 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
25 orc 865 . . . . . . . . . . . . . . . . 17 (𝐹 < 0 → (𝐹 < 0 ∨ 𝐿𝐹))
2624, 25biimtrrdi 253 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 → (𝐹 < 0 ∨ 𝐿𝐹)))
2726com12 32 . . . . . . . . . . . . . . 15 (¬ 0 ≤ 𝐹 → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
28 notnotb 314 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹)
2928a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹))
30 zre 12608 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
31 0red 11258 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3230, 31jca 510 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (𝐿 ∈ ℝ ∧ 0 ∈ ℝ))
33323ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 0 ∈ ℝ))
34 ltnle 11334 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐿 < 0 ↔ ¬ 0 ≤ 𝐿))
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 < 0 ↔ ¬ 0 ≤ 𝐿))
3629, 35anbi12d 630 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹𝐿 < 0) ↔ (¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿)))
37303ad2ant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
38 0red 11258 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
39193ad2ant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 ∈ ℝ)
40 ltleletr 11348 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → 𝐿𝐹))
4137, 38, 39, 40syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → 𝐿𝐹))
42 olc 866 . . . . . . . . . . . . . . . . . . 19 (𝐿𝐹 → (𝐹 < 0 ∨ 𝐿𝐹))
4341, 42syl6 35 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → (𝐹 < 0 ∨ 𝐿𝐹)))
4443ancomsd 464 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹𝐿 < 0) → (𝐹 < 0 ∨ 𝐿𝐹)))
4536, 44sylbird 259 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿) → (𝐹 < 0 ∨ 𝐿𝐹)))
4645com12 32 . . . . . . . . . . . . . . 15 ((¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿) → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
4727, 46jaoi3 1058 . . . . . . . . . . . . . 14 ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
4847impcom 406 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿𝐹))
4948orcd 871 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → ((𝐹 < 0 ∨ 𝐿𝐹) ∨ (♯‘𝑆) < 𝐿))
50 df-3or 1085 . . . . . . . . . . . 12 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) ↔ ((𝐹 < 0 ∨ 𝐿𝐹) ∨ (♯‘𝑆) < 𝐿))
5149, 50sylibr 233 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
52 swrdnd 14657 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5352imp 405 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
5451, 53syldan 589 . . . . . . . . . 10 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
5554ex 411 . . . . . . . . 9 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
56553expb 1117 . . . . . . . 8 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5756expcom 412 . . . . . . 7 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 ∈ Word 𝑉 → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5857com23 86 . . . . . 6 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5918, 58sylbir 234 . . . . 5 (¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6059imp 405 . . . 4 ((¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6117, 60jaoi3 1058 . . 3 ((¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6215, 61sylbi 216 . 2 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6362impcom 406 1 ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3o 1083  w3a 1084   = wceq 1534  wcel 2099  c0 4322  cop 4629   class class class wbr 5145  cfv 6546  (class class class)co 7416  cr 11148  0cc0 11149   < clt 11289  cle 11290  0cn0 12518  cz 12604  chash 14342  Word cword 14517   substr csubstr 14643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-fzo 13676  df-hash 14343  df-word 14518  df-substr 14644
This theorem is referenced by:  swrdnd0  14660  pfxval0  14679
  Copyright terms: Public domain W3C validator