MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnnn0nd Structured version   Visualization version   GIF version

Theorem swrdnnn0nd 14445
Description: The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdnnn0nd ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)

Proof of Theorem swrdnnn0nd
StepHypRef Expression
1 ianor 979 . . . 4 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
2 ianor 979 . . . . . . 7 (¬ (𝐹 ∈ ℤ ∧ 0 ≤ 𝐹) ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹))
3 elnn0z 12411 . . . . . . 7 (𝐹 ∈ ℕ0 ↔ (𝐹 ∈ ℤ ∧ 0 ≤ 𝐹))
42, 3xchnxbir 332 . . . . . 6 𝐹 ∈ ℕ0 ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹))
5 ianor 979 . . . . . . 7 (¬ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿) ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿))
6 elnn0z 12411 . . . . . . 7 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
75, 6xchnxbir 332 . . . . . 6 𝐿 ∈ ℕ0 ↔ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿))
84, 7orbi12i 912 . . . . 5 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ ((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)))
9 or4 924 . . . . . 6 (((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)) ↔ ((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
10 ianor 979 . . . . . . . 8 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ))
1110bicomi 223 . . . . . . 7 ((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ↔ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
1211orbi1i 911 . . . . . 6 (((¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
139, 12bitri 274 . . . . 5 (((¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹) ∨ (¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿)) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
148, 13bitri 274 . . . 4 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
151, 14bitri 274 . . 3 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)))
16 swrdnznd 14431 . . . . 5 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
1716a1d 25 . . . 4 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
18 notnotb 314 . . . . . 6 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ ¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
19 zre 12402 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
20 0red 11057 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℤ → 0 ∈ ℝ)
2119, 20jca 512 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ ℤ → (𝐹 ∈ ℝ ∧ 0 ∈ ℝ))
22213ad2ant2 1133 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℝ ∧ 0 ∈ ℝ))
23 ltnle 11133 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
2422, 23syl 17 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
25 orc 864 . . . . . . . . . . . . . . . . 17 (𝐹 < 0 → (𝐹 < 0 ∨ 𝐿𝐹))
2624, 25syl6bir 253 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 → (𝐹 < 0 ∨ 𝐿𝐹)))
2726com12 32 . . . . . . . . . . . . . . 15 (¬ 0 ≤ 𝐹 → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
28 notnotb 314 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹)
2928a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹))
30 zre 12402 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
31 0red 11057 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3230, 31jca 512 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (𝐿 ∈ ℝ ∧ 0 ∈ ℝ))
33323ad2ant3 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ ℝ ∧ 0 ∈ ℝ))
34 ltnle 11133 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐿 < 0 ↔ ¬ 0 ≤ 𝐿))
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 < 0 ↔ ¬ 0 ≤ 𝐿))
3629, 35anbi12d 631 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹𝐿 < 0) ↔ (¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿)))
37303ad2ant3 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
38 0red 11057 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
39193ad2ant2 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 ∈ ℝ)
40 ltleletr 11147 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → 𝐿𝐹))
4137, 38, 39, 40syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → 𝐿𝐹))
42 olc 865 . . . . . . . . . . . . . . . . . . 19 (𝐿𝐹 → (𝐹 < 0 ∨ 𝐿𝐹))
4341, 42syl6 35 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 < 0 ∧ 0 ≤ 𝐹) → (𝐹 < 0 ∨ 𝐿𝐹)))
4443ancomsd 466 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐹𝐿 < 0) → (𝐹 < 0 ∨ 𝐿𝐹)))
4536, 44sylbird 259 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿) → (𝐹 < 0 ∨ 𝐿𝐹)))
4645com12 32 . . . . . . . . . . . . . . 15 ((¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿) → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
4727, 46jaoi3 1058 . . . . . . . . . . . . . 14 ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ∨ 𝐿𝐹)))
4847impcom 408 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿𝐹))
4948orcd 870 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → ((𝐹 < 0 ∨ 𝐿𝐹) ∨ (♯‘𝑆) < 𝐿))
50 df-3or 1087 . . . . . . . . . . . 12 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) ↔ ((𝐹 < 0 ∨ 𝐿𝐹) ∨ (♯‘𝑆) < 𝐿))
5149, 50sylibr 233 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
52 swrdnd 14443 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5352imp 407 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
5451, 53syldan 591 . . . . . . . . . 10 (((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
5554ex 413 . . . . . . . . 9 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
56553expb 1119 . . . . . . . 8 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5756expcom 414 . . . . . . 7 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 ∈ Word 𝑉 → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5857com23 86 . . . . . 6 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5918, 58sylbir 234 . . . . 5 (¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6059imp 407 . . . 4 ((¬ ¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6117, 60jaoi3 1058 . . 3 ((¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∨ (¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿)) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6215, 61sylbi 216 . 2 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6362impcom 408 1 ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1540  wcel 2105  c0 4266  cop 4576   class class class wbr 5086  cfv 6465  (class class class)co 7316  cr 10949  0cc0 10950   < clt 11088  cle 11089  0cn0 12312  cz 12398  chash 14123  Word cword 14295   substr csubstr 14429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319  df-fzo 13462  df-hash 14124  df-word 14296  df-substr 14430
This theorem is referenced by:  swrdnd0  14446  pfxval0  14465
  Copyright terms: Public domain W3C validator