Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orim12da Structured version   Visualization version   GIF version

Theorem orim12da 32487
Description: Deduce a disjunction from another one. Variation on orim12d 965. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
orim12da.1 ((𝜑𝜓) → 𝜃)
orim12da.2 ((𝜑𝜒) → 𝜏)
orim12da.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim12da (𝜑 → (𝜃𝜏))

Proof of Theorem orim12da
StepHypRef Expression
1 orim12da.3 . 2 (𝜑 → (𝜓𝜒))
2 orim12da.1 . . . 4 ((𝜑𝜓) → 𝜃)
32ex 412 . . 3 (𝜑 → (𝜓𝜃))
4 orim12da.2 . . . 4 ((𝜑𝜒) → 𝜏)
54ex 412 . . 3 (𝜑 → (𝜒𝜏))
63, 5orim12d 965 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
71, 6mpd 15 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847
This theorem is referenced by:  drngmxidlr  33471  rsprprmprmidl  33515  rsprprmprmidlb  33516  rprmirredb  33525  rprmdvdsprod  33527  rtelextdg2  33718
  Copyright terms: Public domain W3C validator