![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orim12da | Structured version Visualization version GIF version |
Description: Deduce a disjunction from another one. Variation on orim12d 965. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
orim12da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
orim12da.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
orim12da.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orim12da | ⊢ (𝜑 → (𝜃 ∨ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12da.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orim12da.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | orim12da.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜏)) |
6 | 3, 5 | orim12d 965 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜒) → (𝜃 ∨ 𝜏))) |
7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → (𝜃 ∨ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: drngmxidlr 33471 rsprprmprmidl 33515 rsprprmprmidlb 33516 rprmirredb 33525 rprmdvdsprod 33527 rtelextdg2 33718 |
Copyright terms: Public domain | W3C validator |