| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orim12da | Structured version Visualization version GIF version | ||
| Description: Deduce a disjunction from another one. Variation on orim12d 966. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| orim12da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| orim12da.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| orim12da.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| orim12da | ⊢ (𝜑 → (𝜃 ∨ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12da.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | orim12da.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | orim12da.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 6 | 3, 5 | orim12d 966 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜒) → (𝜃 ∨ 𝜏))) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → (𝜃 ∨ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: drngmxidlr 33493 rsprprmprmidl 33537 rsprprmprmidlb 33538 rprmirredb 33547 rprmdvdsprod 33549 rtelextdg2 33761 |
| Copyright terms: Public domain | W3C validator |