Step | Hyp | Ref
| Expression |
1 | | rsprprmprmidl.r |
. 2
⊢ (𝜑 → 𝑅 ∈ CRing) |
2 | 1 | crngringd 20273 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | | eqid 2740 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | | eqid 2740 |
. . . . 5
⊢
(RPrime‘𝑅) =
(RPrime‘𝑅) |
5 | | rsprprmprmidl.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ (RPrime‘𝑅)) |
6 | 3, 4, 1, 5 | rprmcl 33511 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (Base‘𝑅)) |
7 | 6 | snssd 4834 |
. . 3
⊢ (𝜑 → {𝑃} ⊆ (Base‘𝑅)) |
8 | | rsprprmprmidl.k |
. . . 4
⊢ 𝐾 = (RSpan‘𝑅) |
9 | | eqid 2740 |
. . . 4
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
10 | 8, 3, 9 | rspcl 21268 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ {𝑃} ⊆ (Base‘𝑅)) → (𝐾‘{𝑃}) ∈ (LIdeal‘𝑅)) |
11 | 2, 7, 10 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝐾‘{𝑃}) ∈ (LIdeal‘𝑅)) |
12 | | eqid 2740 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
13 | 3, 12 | ringidcl 20289 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
14 | 2, 13 | syl 17 |
. . . 4
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
15 | | eqid 2740 |
. . . . . . 7
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
16 | 4, 15, 1, 5 | rprmnunit 33514 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑃 ∈ (Unit‘𝑅)) |
17 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃(∥r‘𝑅)(1r‘𝑅)) → 𝑅 ∈ CRing) |
18 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃(∥r‘𝑅)(1r‘𝑅)) → 𝑃(∥r‘𝑅)(1r‘𝑅)) |
19 | 15, 12 | 1unit 20400 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
20 | 2, 19 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ (Unit‘𝑅)) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃(∥r‘𝑅)(1r‘𝑅)) → (1r‘𝑅) ∈ (Unit‘𝑅)) |
22 | | eqid 2740 |
. . . . . . . 8
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
23 | 15, 22 | dvdsunit 20405 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑃(∥r‘𝑅)(1r‘𝑅) ∧
(1r‘𝑅)
∈ (Unit‘𝑅))
→ 𝑃 ∈
(Unit‘𝑅)) |
24 | 17, 18, 21, 23 | syl3anc 1371 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃(∥r‘𝑅)(1r‘𝑅)) → 𝑃 ∈ (Unit‘𝑅)) |
25 | 16, 24 | mtand 815 |
. . . . 5
⊢ (𝜑 → ¬ 𝑃(∥r‘𝑅)(1r‘𝑅)) |
26 | 3, 8, 22, 2, 6 | ellpi 33366 |
. . . . 5
⊢ (𝜑 →
((1r‘𝑅)
∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r‘𝑅)(1r‘𝑅))) |
27 | 25, 26 | mtbird 325 |
. . . 4
⊢ (𝜑 → ¬
(1r‘𝑅)
∈ (𝐾‘{𝑃})) |
28 | | nelne1 3045 |
. . . 4
⊢
(((1r‘𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r‘𝑅) ∈ (𝐾‘{𝑃})) → (Base‘𝑅) ≠ (𝐾‘{𝑃})) |
29 | 14, 27, 28 | syl2anc 583 |
. . 3
⊢ (𝜑 → (Base‘𝑅) ≠ (𝐾‘{𝑃})) |
30 | 29 | necomd 3002 |
. 2
⊢ (𝜑 → (𝐾‘{𝑃}) ≠ (Base‘𝑅)) |
31 | 3, 8, 22, 2, 6 | ellpi 33366 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r‘𝑅)𝑥)) |
32 | 31 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑥 ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r‘𝑅)𝑥)) |
33 | 32 | biimpar 477 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) ∧ 𝑃(∥r‘𝑅)𝑥) → 𝑥 ∈ (𝐾‘{𝑃})) |
34 | 2 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) |
35 | 34 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑅 ∈ Ring) |
36 | 6 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑃 ∈ (Base‘𝑅)) |
37 | 36 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑃 ∈ (Base‘𝑅)) |
38 | 3, 8, 22, 35, 37 | ellpi 33366 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑦 ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r‘𝑅)𝑦)) |
39 | 38 | biimpar 477 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) ∧ 𝑃(∥r‘𝑅)𝑦) → 𝑦 ∈ (𝐾‘{𝑃})) |
40 | | eqid 2740 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
41 | 1 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑅 ∈ CRing) |
42 | 5 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑃 ∈ (RPrime‘𝑅)) |
43 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑥 ∈ (Base‘𝑅)) |
44 | | simplr 768 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑦 ∈ (Base‘𝑅)) |
45 | 3, 8, 22, 34, 36 | ellpi 33366 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
46 | 45 | biimpa 476 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑃(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) |
47 | 3, 4, 22, 40, 41, 42, 43, 44, 46 | rprmdvds 33512 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑃(∥r‘𝑅)𝑥 ∨ 𝑃(∥r‘𝑅)𝑦)) |
48 | 33, 39, 47 | orim12da 32487 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃}))) |
49 | 48 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃})))) |
50 | 49 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃})))) |
51 | 50 | ralrimivva 3208 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃})))) |
52 | 3, 40 | isprmidlc 33440 |
. . 3
⊢ (𝑅 ∈ CRing → ((𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅) ↔ ((𝐾‘{𝑃}) ∈ (LIdeal‘𝑅) ∧ (𝐾‘{𝑃}) ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃})))))) |
53 | 52 | biimpar 477 |
. 2
⊢ ((𝑅 ∈ CRing ∧ ((𝐾‘{𝑃}) ∈ (LIdeal‘𝑅) ∧ (𝐾‘{𝑃}) ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃}))))) → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅)) |
54 | 1, 11, 30, 51, 53 | syl13anc 1372 |
1
⊢ (𝜑 → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅)) |