Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rsprprmprmidl Structured version   Visualization version   GIF version

Theorem rsprprmprmidl 33494
Description: In a commutative ring, ideals generated by prime elements are prime ideals. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rsprprmprmidl.k 𝐾 = (RSpan‘𝑅)
rsprprmprmidl.r (𝜑𝑅 ∈ CRing)
rsprprmprmidl.p (𝜑𝑃 ∈ (RPrime‘𝑅))
Assertion
Ref Expression
rsprprmprmidl (𝜑 → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅))

Proof of Theorem rsprprmprmidl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rsprprmprmidl.r . 2 (𝜑𝑅 ∈ CRing)
21crngringd 20166 . . 3 (𝜑𝑅 ∈ Ring)
3 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2733 . . . . 5 (RPrime‘𝑅) = (RPrime‘𝑅)
5 rsprprmprmidl.p . . . . 5 (𝜑𝑃 ∈ (RPrime‘𝑅))
63, 4, 1, 5rprmcl 33490 . . . 4 (𝜑𝑃 ∈ (Base‘𝑅))
76snssd 4760 . . 3 (𝜑 → {𝑃} ⊆ (Base‘𝑅))
8 rsprprmprmidl.k . . . 4 𝐾 = (RSpan‘𝑅)
9 eqid 2733 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
108, 3, 9rspcl 21174 . . 3 ((𝑅 ∈ Ring ∧ {𝑃} ⊆ (Base‘𝑅)) → (𝐾‘{𝑃}) ∈ (LIdeal‘𝑅))
112, 7, 10syl2anc 584 . 2 (𝜑 → (𝐾‘{𝑃}) ∈ (LIdeal‘𝑅))
12 eqid 2733 . . . . . 6 (1r𝑅) = (1r𝑅)
133, 12ringidcl 20185 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
142, 13syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
15 eqid 2733 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
164, 15, 1, 5rprmnunit 33493 . . . . . 6 (𝜑 → ¬ 𝑃 ∈ (Unit‘𝑅))
171adantr 480 . . . . . . 7 ((𝜑𝑃(∥r𝑅)(1r𝑅)) → 𝑅 ∈ CRing)
18 simpr 484 . . . . . . 7 ((𝜑𝑃(∥r𝑅)(1r𝑅)) → 𝑃(∥r𝑅)(1r𝑅))
1915, 121unit 20294 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
202, 19syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
2120adantr 480 . . . . . . 7 ((𝜑𝑃(∥r𝑅)(1r𝑅)) → (1r𝑅) ∈ (Unit‘𝑅))
22 eqid 2733 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
2315, 22dvdsunit 20299 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑃(∥r𝑅)(1r𝑅) ∧ (1r𝑅) ∈ (Unit‘𝑅)) → 𝑃 ∈ (Unit‘𝑅))
2417, 18, 21, 23syl3anc 1373 . . . . . 6 ((𝜑𝑃(∥r𝑅)(1r𝑅)) → 𝑃 ∈ (Unit‘𝑅))
2516, 24mtand 815 . . . . 5 (𝜑 → ¬ 𝑃(∥r𝑅)(1r𝑅))
263, 8, 22, 2, 6ellpi 33345 . . . . 5 (𝜑 → ((1r𝑅) ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r𝑅)(1r𝑅)))
2725, 26mtbird 325 . . . 4 (𝜑 → ¬ (1r𝑅) ∈ (𝐾‘{𝑃}))
28 nelne1 3026 . . . 4 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ (𝐾‘{𝑃})) → (Base‘𝑅) ≠ (𝐾‘{𝑃}))
2914, 27, 28syl2anc 584 . . 3 (𝜑 → (Base‘𝑅) ≠ (𝐾‘{𝑃}))
3029necomd 2984 . 2 (𝜑 → (𝐾‘{𝑃}) ≠ (Base‘𝑅))
313, 8, 22, 2, 6ellpi 33345 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r𝑅)𝑥))
3231ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑥 ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r𝑅)𝑥))
3332biimpar 477 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) ∧ 𝑃(∥r𝑅)𝑥) → 𝑥 ∈ (𝐾‘{𝑃}))
342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
3534adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑅 ∈ Ring)
366ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑃 ∈ (Base‘𝑅))
3736adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑃 ∈ (Base‘𝑅))
383, 8, 22, 35, 37ellpi 33345 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑦 ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r𝑅)𝑦))
3938biimpar 477 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) ∧ 𝑃(∥r𝑅)𝑦) → 𝑦 ∈ (𝐾‘{𝑃}))
40 eqid 2733 . . . . . . 7 (.r𝑅) = (.r𝑅)
411ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑅 ∈ CRing)
425ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑃 ∈ (RPrime‘𝑅))
43 simpllr 775 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑥 ∈ (Base‘𝑅))
44 simplr 768 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑦 ∈ (Base‘𝑅))
453, 8, 22, 34, 36ellpi 33345 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃}) ↔ 𝑃(∥r𝑅)(𝑥(.r𝑅)𝑦)))
4645biimpa 476 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → 𝑃(∥r𝑅)(𝑥(.r𝑅)𝑦))
473, 4, 22, 40, 41, 42, 43, 44, 46rprmdvds 33491 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑃(∥r𝑅)𝑥𝑃(∥r𝑅)𝑦))
4833, 39, 47orim12da 32439 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃})) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃})))
4948ex 412 . . . 4 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃}))))
5049anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃}))))
5150ralrimivva 3176 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃}))))
523, 40isprmidlc 33419 . . 3 (𝑅 ∈ CRing → ((𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅) ↔ ((𝐾‘{𝑃}) ∈ (LIdeal‘𝑅) ∧ (𝐾‘{𝑃}) ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃}))))))
5352biimpar 477 . 2 ((𝑅 ∈ CRing ∧ ((𝐾‘{𝑃}) ∈ (LIdeal‘𝑅) ∧ (𝐾‘{𝑃}) ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ (𝐾‘{𝑃}) → (𝑥 ∈ (𝐾‘{𝑃}) ∨ 𝑦 ∈ (𝐾‘{𝑃}))))) → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅))
541, 11, 30, 51, 53syl13anc 1374 1 (𝜑 → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wss 3898  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  1rcur 20101  Ringcrg 20153  CRingccrg 20154  rcdsr 20274  Unitcui 20275  RPrimecrpm 20352  LIdealclidl 21145  RSpancrsp 21146  PrmIdealcprmidl 33407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-rprm 20353  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-rsp 21148  df-prmidl 33408
This theorem is referenced by:  rsprprmprmidlb  33495  rprmasso  33497
  Copyright terms: Public domain W3C validator